Implementation of Area Efficient Multiplexer Based Cordic

M. Madhava Rao¹, G. Suresh²

¹M.Tech student M.L.E College, S. Konda, Prakasam (DIST), India
²Assoc. prof in ECE Department, M.L.E College, S. Konda, Prakasam (DIST), India

Abstract: In this paper the efficacy of this approach is studied for the implementation on FPGA. For this study, both non pipelined and 2 level pipelined CORDIC with 8 stages and using two schemes – one using adders in all the stages and another using multiplexers in the second and third stages. A 16 bit CORDIC for generating the sine/cosine functions is implemented using all the four schemes on both Xilinx Virtex 6 FPGA(XC6VLX240) and Altera Cyclone II FPGA (EP2C20F484C7). From the implementation results, it is found that the non pipelined and pipelined CORDICs using multiplexer requires 1.6, 1.4 times lower area in Xilinx FPGA and 1.8, 1.6 times lower area in Altera FPGA than that using only adders. This is achieved without reduction in speed. It has also been observed that pipeline CORDIC reduces the number of resources by 7.5% as compared to original CORDIC. In addition to it power dissipation in pipeline CORDIC has also been reduced by 6.75% as compared to original CORDIC.

Keywords: CORDIC, rotation mode, multiplexer, pipelining, FPGA

1. Introduction

CORDIC is the acronym for COordinate Rotation Digital Computer. It is an iterative algorithm introduced by Jack E. Volder [1] and later refined by Walther [2] and others. CORDIC unit uses only shifts and adds to perform a wide range of functions including vector rotations, certain trigonometric, hyperbolic, linear and logarithmic functions, it can realize universal modulator [4], demodulator [5]. CORDIC algorithm is used in diverse applications such as mathematical coprocessor units, calculators, waveform generators, universal modulator, demodulator digital filters carrier as well as bit time recovery circuits and digital modems. In the rotation mode, CORDIC may be used for converting a vector in polar form to rectangular form. CORDIC algorithm is very well suited for VLSI implementation. The block diagram of unrolled CORDIC with 8 stages is shown in Fig.1. Even though adders and shifters were originally used for the implementation of CORDIC, a novel scheme which uses multiplexer (MUX) for few stages of unrolled CORDIC is proposed in [3] and is studied by implementation on ASIC. In this scheme, the first stage is removed and adders at the 2nd and 3rd stages are replaced by multiplexers. This methodology achieves less area compared to original unrolled CORDIC.

FPGAs such as Virtex 6 and Cyclone II have fixed logic blocks which contain various functional blocks such as lookup tables, fast carry logic and flip flops. The objective of this paper is to study how an FPGA based unrolled CORDIC using multiplexer performs compared to those using adders.

Figure 1: Original unrolled CORDIC
CORDIC can be used to calculate a number of different functions. This explanation shows how to use CORDIC in rotation mode to calculate the sine and cosine of an angle, and assumes the desired angle is given in radians and represented in a fixed point format. To determine the sine or cosine for an angle θ, the y or x coordinate of a point on the unit circle corresponding to the desired angle must be found. Using CORDIC, we would start with the vector v_0.

![Figure 2](image)

In the first iteration, this vector is rotated 45° counter clockwise to get the vector v_1. Successive iterations rotate the vector in one or the other direction by size-decreasing steps, until the desired angle has been achieved: Step size is $\tan^{-1}(1/(2^{i-1}))$ for $i = 1, 2, 3, \ldots$

More formally, every iteration calculates a rotation, which is performed by multiplying the vector v_{i-1} with the rotation matrix R_i:

$$v_i = R_i v_{i-1}$$

The rotation matrix is given by:

$$R_i = \begin{bmatrix} \cos \gamma_i & -\sin \gamma_i \\ \sin \gamma_i & \cos \gamma_i \end{bmatrix}$$

Using the following two trigonometric identities:

$$\cos \alpha = \frac{1}{\sqrt{1 + \tan^2 \alpha}}$$

$$\sin \alpha = \frac{\tan \alpha}{\sqrt{1 + \tan^2 \alpha}}$$

the rotation matrix becomes:

$$R_i = \frac{1}{\sqrt{1 + \tan^2 \gamma_i}} \begin{bmatrix} 1 & -\tan \gamma_i \\ \tan \gamma_i & 1 \end{bmatrix}$$

The expression for the rotated vector v_i then becomes:

$$v_i = \frac{1}{\sqrt{1 + \tan^2 \gamma_i}} \begin{bmatrix} 1 & -\tan \gamma_i \\ \tan \gamma_i & 1 \end{bmatrix} v_{i-1}$$

where x_{i-1} and y_{i-1} are the components of v_{i-1}. Restricting the angles γ_i so that takes on the values $\pm 2^{i-1}$, the multiplication with the tangent can be replaced by a division by a power of two, which is efficiently done in digital computer hardware using a bit shift. The expression then becomes:

$$v_i = K_i \begin{bmatrix} 1 & -a_i 2^{-i} \\ a_i 2^{-i} & 1 \end{bmatrix} \begin{bmatrix} x_{i-1} \\ y_{i-1} \end{bmatrix}$$

where

$$K_i = \frac{1}{\sqrt{1 + 2^{-2i}}}$$

and a_i can have the values of -1 or 1, and is used to determine the direction of the rotation; if the angle θ_i is positive then a_i is +1, otherwise it is -1. K_i can be ignored in the iterative process and then applied afterward with a scaling factor:

$$K(n) = \prod_{i=0}^{n-1} K_i = \prod_{i=0}^{n-1} 1/\sqrt{1 + 2^{-2i}}$$

which is calculated in advance and stored in a table, or as a single constant if the number of iterations is fixed. This correction could also be made in advance, by scaling v_0 and hence saving a multiplication. Additionally it can be noted that:

$$K = \lim_{n \to \infty} K(n) \approx 0.6072529350088812561694$$

to allow further reduction of the algorithm's complexity. After a sufficient number of iterations, the vector's angle will be close to the wanted angle θ. For most ordinary purposes, 40 iterations ($n = 40$) is sufficient to obtain the correct result to the 10th decimal place. The only task left is to determine if the rotation should be clockwise or counter clockwise at each iteration (choosing the value of a_i). This is done by keeping track of how much the angle was rotated at each iteration and subtracting that from the wanted angle; then in order to get closer to the wanted angle θ, if $\theta_{i+1} = \theta_i + a_i \gamma_i$ is positive, the rotation is clockwise, otherwise it is negative and the rotation is counter clockwise. $\gamma_i = \arctan 2^{-i}$

The values of γ_i must also be pre computed and stored. But for small angles, γ_i can be found by a fixed point representation, reducing table size. As can be seen in the illustration above, the sine of the angle θ is the y coordinate of the final vector, while the x coordinate is the cosine value.

2. Cordic Architectures

CORDIC computation is inherently sequential due to two main bottlenecks firstly the micro-rotation for any iteration is performed on the intermediate vector computed by the previous iteration and secondly the $(i+1)$th iteration could be started only after the completion of the ith iteration, since the value of which is required to start the $(i+1)$th iteration could be known only after the completion of the ith iteration. To alleviate the second bottleneck some attempts have been made for evaluation of values corresponding to small micro-rotation angles [4]. However, the CORDIC iterations could not still be performed in parallel due to the first bottleneck. A partial parallelization has been realized in [4] by combining a pair of conventional CORDIC iterations into a single merged iteration which provides better area-delay efficiency. But the accuracy is slightly affected by such
merging and cannot be extended to a higher number of conventional CORDIC iterations since the induced error becomes unacceptable [5]. Parallel realization of CORDIC iterations to handle the first bottleneck by direct unfolding of micro-rotation is possible, but that would result in increase in computational complexity and the advantage of simplicity of CORDIC algorithm gets degraded [6]. Although no popular architectures are known to us for fully parallel implementation of CORDIC, different forms of pipelined implementation of CORDIC have however been proposed for improving the computational throughput [7]. To handle latency bottlenecks, various architectures have been developed and reported in this review. Most of the well-known architectures could be grouped under bit parallel iterative CORDIC, bit parallel unrolled CORDIC, bit serial iterative CORDIC and pipelined CORDIC architecture which we discuss briefly in the following subsections.

A. Bit Parallel Iterative CORDIC Architecture

The vector Rotation CORDIC structure is represented by the schematics in Fig. 3. Each branch consists of an adder-subtractor combination, a shift unit and a register for buffering the output. At the beginning of a calculation initial values are fed into the register by the multiplexer, where the MSB of the stored value in the z-branch determines the operation mode for the adder-subtractor. Signals in the x and y branch pass the shift units and are then added to or subtracted from the unshifted signal in the opposite path. The z branch arithmetically combines the registers values with the values taken from a lookup table (LUT) whose address is changed accordingly to the number of iteration. For n iterations the output is mapped back to the registers before initial values are fed in again and the final sine value can be accessed at the output. A simple finite-state machine is needed to control the multiplexers, the shift distance and the addressing of the constant values.

When implemented in an FPGA the initial values for the vector coordinates as well as the constant values in the LUT can be hardwired in a word wide manner. The adder and the subtractor component are carried out separately and a multiplexer controlled by the sign of the angle accumulator distinguishes between addition and subtraction by routing the signals as required. The shift operations as implemented change the shift distance with the number of iterations but those require a high fan in and reduce the maximum speed for the application. In addition the output rate is also limited by the fact that operations are performed iteratively and therefore the maximum output rate equals 1/n times the clock rate.

![Iterative CORDIC](image)

Figure 3: Iterative CORDIC

B. Bit Parallel Unrolled CORDIC Architecture

![Unrolled CORDIC](image)

Figure 4: Unrolled CORDIC
Instead of buffering the output of one iteration and using the same resources again, one could simply cascade the iterative CORDIC, which means rebuilding the basic CORDIC structure for each iteration. Consequently, the output of one stage is the input of the next one, as shown in Fig. 4, and in the face of separate stages two simplifications become possible. First, the shift operations for each step can be performed by wiring the connections between stages appropriately. Second, there is no need for changing constant values and those can therefore be hardwired as well. The purely unrolled design only consists of combinational components and computes one sine value per clock cycle. Input values find their path through the architecture on their own and do not need to be controlled. As we know, the area in FPGAs can be measured in CLBs, each of which consist of two lookup tables as well as storage cells with additional control components. For the purely combinational design the CLB’s function generators perform the add and shift operations and no storage cells are used. This means registers could be inserted easily without significantly increasing the area. Pipelining ads some latency, of course, but the application needs to output values at 48 kHz and the latency for 14 iterations equals 312.5 ms which are known to be imperceptible. However, inserting registers between stages would also reduce the maximum path delays and correspondingly a higher maximum speed can be achieved.

C. Bit Serial Iterative CORDIC Architecture

Both, the unrolled and the iterative bit-parallel designs, show disadvantages in terms of complexity and path delays going along with the large number of cross connections between single stages. To reduce this complexity one could change the design into a completely bit-serial iterative architecture. Bit-serial means only one bit is processed at a time and hence the cross connections become one bit-wide data paths. Clearly, the throughput becomes a function of In spite of this the output rate can be almost as high as achieved with the unrolled design. The reason is the structural simplicity of a bit-serial design and the correspondingly high clock rate achievable. Fig. 5 shows the basic architecture of the bit serial CORDIC processor.

\[\text{Clock rate} = \frac{\text{Number of iterations} \times \text{word length}}{\text{Word length}} \]

![Figure 5: Bit-serial CORDIC](image)

D. Pipelined CORDIC Architecture

Since the CORDIC iterations are identical, it is very much convenient to map them into pipelined architectures. The main emphasis in efficient pipelined implementation lies with the minimization of the critical path. The earliest pipelined architecture that we find was suggested in 1984. Pipelined CORDIC circuits have been used thereafter for high-throughput implementation of sinusoidal wave generation, fixed and adaptive filters, discrete orthogonal transforms and other signal processing applications [8].

3. MUX Based Cordic

The scheme for reducing the area of the CORDIC using multiplexer is proposed for the ASIC implementation in paper [3]. This is adopted for the FPGA based implementation in this paper. The area is reduced by removing some of the stages of Fig.1. The first stage output of original unrolled CORDIC architecture is equal to \(xi \), therefore we can directly write the output of first stage as

\[y_1 = x_1 \tag{9} \]

\[x_1 = x_0 \tag{10} \]

If the first stage output is positive, then

\[y_2 = y_1 - x_1 / 2 = x_i / 2 \tag{11} \]

\[x_2 = x_1 + y_1 / 2 = 3x_i / 2 \tag{12} \]

The vector coordinates corresponding to negative output is
The output of the second stage is fixed. So we can implement the second stage using two Muxes and choosing select line as the MSB bit of the previous angle accumulator output. Fig. 6 shows the circuit of second stage using Muxes with MSB select line.

\[
Y_2 = Y_1 + X_1/2 = 3 \times X_i/2 \tag{13}
\]

\[
X_2 = X_1 - Y_1/2 = X_i/2 \tag{14}
\]

To reduce the area, we replace the third stage with Muxes. Since the third stage output also depends only on \(x_i\), we can express the outputs as

\[
\frac{3x_i}{2}, \frac{x_i}{2}.
\]

![Figure 6](image)

4. Conclusions

The design proposed in this paper for unrolled CORDIC is based on eliminating some of the adder stages by introduction of Muxes for area reduction. By implementation on Xilinx and Altera FPGAs, it is verified that the area reduction is achieved in these devices also in addition to the implementation on ASICs as reported in the literature.

5. Future Scope

Future scope of this paper can be done into the benefits that can be derived from using the consider unit in a neural networks. Practical neural network will help in understanding how large a network could be supported and which implementation best suited for networks of varying size.

References

Author Profile

M. Madhava Rao received B.Tech. degree in Electronics and Communications Engineering from JNTU University, Hyderabad, in 2006, Currently doing M. Tech. in ML Engineering college, from JNTUK University, Kakinada.

G. Suresh received B.E. degree in Electronics and Communications Engineering from JNTU, received M.TECH. from JNTUH and currently he working as Professor & HOD, Dept of ECE in ML Engineering College, S. KONDA, Prakasam (DT)