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Abstract: In this paper numerical technique has been used to solve multidimensional steady state heat flow equation with Dirichlet 
boundary conditions. We focus on finite volume numerical technique for solving heat equation in two and three dimensional problems 
using TDMA solver. Finally, the efficiency of this technique is tested for some heat flow problem with known analytical solutions and 
the numerical results obtained show that the technique produces accurate results.  
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1. Introduction 
 
Computational Fluid Dynamics (CFD) is the branch of fluid 
dynamics providing a cost effective mean of simulating real 
flow by the numerical solution of the governing equations. 
The computational techniques replace the governing partial 
differentials equations with systems of algebraic equation 
that are much easier to solve using computers. The steady 
improvement in computer technology has led to development 
of numerous computational grid techniques for solving 
numerical solution of three dimensional problems, for more 
detailed the reader may consult [1,2]. As mathematical 
modelling became an integral part of analysis of engineering 
problems, a variety of numerical grid techniques such as 
finite difference method (FDM) which is the simplest 
procedure used to convert the differential equations to 
discrete form [3,4]. The finite element method (FEM) which 
was developed at first for structural dynamics problems and 
then by CFD developers to facilitate solving more complex 
geometry problems that are difficult to discretise using Finite 
difference method [3,5,6] . The finite volume method (FVM) 
which is now a days, the most popular technique for CFD. 
This technique can be viewed as a subset of the finite 
element method. Each of these methods has its own merits 
and demerits depending on the problem to be solved, for 
more detailed the reader may consult [7, 8]. The new 
advance technique is grid less technique plays important role 
for solving numerical solutions [9].Out of the available 
numerical gird techniques, finite volume technique is one of 
the most flexible and versatile technique for solving the 
problems in CFD. 
 
The remainder of the paper is organised as follows. In 
Section 2, a short review of finite volume techniques with 
the help of TDMA (Tri-Diagonal Matrix Algorithm) solver is 
given. In Section 3, formulation the two and three 
dimensional heat flow problems with Dirichlet boundary 
conditions. In section 4, Numerical examples are presented 
to illustrate the efficiency of the developed scheme. In 
Section 5, the numerical solutions obtained by this technique 
are compared with exact solution. Finally, Section 6 
concludes the paper. 
 

2. Finite Volume Grid Technique 
 
Finite Volume Method is an increasing popular numerical 
technique for the approximate solution of partial differential 
equations. For more detailed the reader may consult [10]. 
The Finite Volume analysis involves three basic steps. 
 
• The problem domain is defined and divided the solution 

domain into discrete control volume. Let us place a 
numbers of nodal points in the given space and domain is 
divided in such way that, each node is surrounded by the 
control volume or grid and the physical boundaries 
coincide with the control volume boundaries. 

• The integration of the governing equation over the control 
volume to yield a discretised equation at its nodal point. 

• Solve the set of discretised equations using TDMA solver. 
 

2.1 Finite Volume Discretizations 
 
The General form of discretised equations for 
multidimensional steady state heat flow problems are given 
by equation (1).  

 
���� = � ���� + ��                           (1) 

 �� = � �� − ��                              (2) 

�� = ��
∆

                                       (3)  
 Where �� are the neighbouring coefficient 
�� , �� , �� , ��, �� , ��for two and three dimensional 
problems, �� are the values of the function � at the 
neighbouring nodes, ∆ is the grid size ∆� , ∆� and 
∆� , ∆y, ∆� in two and three dimensional respectively and 
�� ��� �� are the values obtained from the linear source 
term  ��  + ���� which is the function of the dependent 
variable. 
 
Note that, to obtain the values  �� ��� �� from the linear 
source term  ��  + ���� with boundary B. For Fixed value 
��  , 
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For Fixed Flux q, 

�� = � � � ��� �� = 0 
 
2.2 TDMA (Tri-Diagonal Matrix Algorithm) 
 
The tri diagonal matrix algorithm (TDMA), also known also 
Thomas algorithm, is a simplified form of Gaussian 
elimination that can be used to solve tri diagonal system of 
equations 
 

−������ + ���� − ������ = ��                         (4)  
 � = 1, − − −−, �  

 
The TDMA is based on the Gaussian elimination procedure 
and consist of two parts-a forward elimination phase and a 
backward substitution phase. The TDMA is actually a direct 
method for 1D situation, but it can be applied iteratively in a 
line-by-line fashion, to solve multidimensional problems and 
is widely used in CFD programs. Let us consider the system 
for � = 1, − − −−, � and we use the general form of the 
TDMA solver is given by 
 

 �� = ������ + ��                               (5) 
Where 

�� =
��

�� − ������
 ��� �� =

������ + ��

�� − ������
 

To solve the above system TDMA is applied for two and 
three dimensional problems respectively, the discretised 
equation is re-arranged in the form 
 

−���� + ����−���� = ���� + ���� + ��          (6) 
 
−���� + ����−���� = 
 

 ���� + ���� + ���� + ���� + ��             (7) 
 
3. Problem Formulations 
 
3.1 For two dimensional problems 
 
Consider two dimensional steady state heat transfers in the 
plate with Dirichlet boundary conditions; the mathematical 
formulation of this problem is given by 
 

�
��

��
��
��

� +
�

��
��

��
��

� = 0 �� 0 � �, � � 1            (8) 

Subject to the Dirichlet boundary conditions, 
 

�(0, �) = ��(�), 0 � � � 1 
�(1, �) = ��(�), 0 � � � 1 

 
�(�, 0) = ��(�), 0 � � � 1 
�(�, 1) = ��(�), 0 � � � 1 

Where � �, ��,  �� ��� �� are known functions. The solution 
region with boundary sides is shown in figure1. 

 
Figure 1: Solution region with boundary sides for two 

dimensional problems 
 

3.2 For three dimensional problems 
 
Consider three dimensional steady state heat transfers in the 
cube with Dirichlet boundary conditions; the mathematical 
formulation of this problem is given by 
 

�
��

��
��
��

� +
�

��
��

��
��

� +
�

��
��

��
��

� =  0          (9)  

0 � �, �, � � 1 
Subject to the Dirichlet boundary conditions, 

�(0, �, �) = ��(�, �), 0 � �, � � 1 
�(1, �, �) = ��(�, �), 0 � �, � � 1 

 
�(�, 0, �) = ��(�, �), 0 � �, � � 1 
�(�, 1, �) = ��(�, �), 0 � �, � � 1 

 
�(�, �, 0) = ��(�, �), 0 � �, � � 1 
�(�, �, 1) = ��(�, �), 0 � �, � � 1 

Where � �, ��,  ��,  ��,  �� ���  �� are known functions. 
The solution region with boundary sides is shown in figure 2. 
 

 
Figure 2: Solution region with boundary sides for three 

dimensional problems 
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For three dimensional problems, the TDMA solver is applied 
line by line on the selected plane and then the calculation is 
moved to the next plane, scanning the solution region plane 
by plane. In this problem, there are four planes. These planes 
are numbered as I, II, III, and IV from bottom to top as 
shown in figure 2. 
 
Using the TDMA procedure values of the � along a selected 
north- south line are computed. The calculation is moved to 
the next line and subsequently swept through the whole 
plane until all unknown values on each line have been 
calculated. After completion the calculation of the plane-I, 
the process is moved on to the next plane-II and then 
continue up to plane-IV. The solution region is divided into 
four XY planes with girds as shown in figure 3. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: The solution region is divided into four XY planes 
with girds and nodes 

 
4. Numerical Examples 
 
The finite volume technique is apply on two selected 
examples in which the exact solutions of � are known to us 
in order to test the efficiency and adaptability of the 
proposed technique. The computed solution is found for the 
entire interior grid points are given in Tables 1-4. 
 
Example I 
 
Let us consider the two dimensional steady state heat 
equations as shown by equation (8) with dirichlet boundary 
conditions  

 �(�, 0) = − �� , �(1, �) = 1 − �� 
�(�, 1) = �� − 1, �(0, �) = �� 

The Exact solution of this problem is given by �(�, �) =
�� − �� and its converged solution is obtained after 9th 
iterations as shown in table 1.  
 
Example II 
 
Let us consider the three dimensional steady state heat 
equations as shown by equation (9) with dirichlet boundary 
conditions  

�(0, �, �) = �(�, 0, �) = �(�, �, 0) = 1 
�(1, �, �) = �(�, 1, �) = �(�, �, 1) = 1 

The Exact solution of this problem is given by �(�, �, �) = 1 
and its converged solution is obtained after 17th iterations as 
shown in table 2.  
 
Example III 
 
Let us consider the three dimensional steady state heat 
equation as shown by equation (9) with dirichlet boundary 
conditions  

�(0, �, �) = �(�, 0, �) = �(�, �, 0) = 0 
�(1, �, �) = �� 
�(�, 1, �) = �� 
�(�, �, 1) = �� 

The Exact solution of this problem is given by �(�, �, �) =
��� and its converged solution is obtained after 7th iterations 
as shown in table 3-4. 

Paper ID: 02014031 520



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 7, July 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Table 1 Comparison between Finite Volume solution and 
exact solution for example I 

Nodes Finite 
Volume Exact 

1 0.0000 0.0000 
2 -0.1328 -0.1250 
3 -0.3828 -0.3750 
4 -0.7500 -0.7500 
5 0.1328 0.1250 
6 0.0000 0.0000 
7 -0.2500 -0.2500 
8 -0.6172 -0.6250 
9 0.3828 0.3750 
10 0.2500 0.2500 
11 0.0000 0.0000 
12 -0.3672 -0.3750 
13 0.7500 0.7500 
14 0.6172 0.6250 
15 0.3672 0.3750 
16 0.0000 0.0000 

 
Table 2: Comparison between Finite Volume solution and 

exact solution for example II 

Nodes Finite Volume Technique Exact I II III IV 
1 1.000 1.000 1.000 1.000 1.000 
2 1.000 1.000 1.000 1.000 1.000 
3 1.000 1.000 1.000 1.000 1.000 
4 1.000 1.000 1.000 1.000 1.000 
5 1.000 1.000 1.000 1.000 1.000 
6 1.000 1.000 1.000 0.999 1.000 
7 1.000 1.000 0.999 0.999 1.000 
8 1.000 1.000 0.999 0.999 1.000 
9 1.000 1.000 1.000 1.000 1.000 

10 1.000 1.000 0.999 0.999 1.000 
11 1.000 1.000 0.999 0.997 1.000 
12 1.000 1.000 0.999 0.995 1.000 
13 1.000 1.000 1.000 1.000 1.000 
14 1.000 1.000 0.999 0.999 1.000 
15 1.000 1.000 0.999 0.995 1.000 
16 1.000 1.000 0.998 0.984 1.000 

 
Table 3: Comparison between Finite Volume solution of 

plane I and II with exact solution for example III 
Planes I II 
Nodes Finite Volume Exact Finite Volume Exact 

1 0.0019 0.0020 0.0064 0.0059 
2 0.0055 0.0059 0.0176 0.0176 
3 0.0101 0.0098 0.0283 0.0293 
4 0.0123 0.0137 0.0395 0.0410 
5 0.0055 0.0059 0.0197 0.0176 
6 0.0174 0.0176 0.0546 0.0527 
7 0.0305 0.0293 0.0867 0.0879 
8 0.0400 0.0410 0.1186 0.1230 
9 0.0090 0.0098 0.0329 0.0293 

10 0.0305 0.0293 0.0920 0.0879 
11 0.0529 0.0488 0.1463 0.1465 
12 0.0600 0.0684 0.1985 0.2051 
13 0.0165 0.0137 0.0435 0.0410 
14 0.0400 0.0410 0.1260 0.1230 
15 0.0700 0.0684 0.2057 0.2051 
16 0.0901 0.0957 0.2819 0.2871 

 
 

Table-4 Comparison between Finite Volume solution of 
plane III and IV with exact solution for example III 

Planes III IV 
Nodes Finite Volume Exact Finite Volume Exact 

1 0.0097 0.0098 0.0136 0.0137 
2 0.0288 0.0293 0.0408 0.0410 
3 0.0480 0.0488 0.0680 0.0684 
4 0.0677 0.0684 0.0954 0.0957 
5 0.0295 0.0293 0.0409 0.0410 
6 0.0877 0.0879 0.1225 0.1230 
7 0.1453 0.1465 0.2041 0.2051 
8 0.2033 0.2051 0.2858 0.2871 
9 0.0495 0.0488 0.0684 0.0684 

10 0.1470 0.1465 0.2050 0.2051 
11 0.2435 0.2441 0.3415 0.3418 
12 0.3403 0.3418 0.4781 0.4785 
13 0.0687 0.0684 0.0957 0.0957 
14 0.2052 0.2051 0.2867 0.2871 
15 0.3417 0.3418 0.4784 0.4785 
16 0.4776 0.4785 0.6698 0.6699 

 
5. Results and Discussions 
 
All the numerical calculations obtained with control volume 
grids for two and three dimensional heat flow problems 
using Microsoft excel and the TDMA procedure is repeated 
until a converged solution is obtained. The comparison 
between the finite volume technique and exact solution for 
example-I as shown in figure 4 and for example III with 
respective to plane I, II, III and IV as shown in figure 5. 

 
Figure 4: Graphical Comparison between Numerical and 

Exact Solution for example I 
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Figure 5: Graphical Comparison between Numerical and 
Exact Solution of planes I, II, III, and IV for example III 

 
6. Conclusion 
 
In this work, we have studied finite volume numerical grid 
technique for steady state heat flow problems and obtained 
the numerical solution for two and three dimensional heat 
flow equations with Dirichlet boundary conditions. We have 
used TDMA solver for solving algebraic equations and the 
results obtained by this technique are all in good agreement 
with the exact solutions and the total error less than 1 under 
study. Moreover this technique is efficient, reliable, accurate 
and easier to implement in Microsoft excel as compared to 
the other costly techniques. 
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