International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

Superior Articular Facets of Atlas Vertebra - Amorphological Study

Dr. Girish V. Patil¹, Dr. Shishirkumar²

Abstract: Superior Articular Facets (SAF) are present on atlas vertebra facing superomedially & they occupy most of the upper surface of the lateral mass and lie obliquely, their anterior ends being always nearer to the midline than the posterior ends. This study was carried using 100 adult dry atlas vertebrae of unknown ages and sexes. The importance of such morphological studies lies in the field of kinesiology. Any variation in the articulating surfaces also affects the movements occurring at that particular joint

Keywords: Articular, Atlas, Facets, Kinesiology, Morphological

1. Introduction

Paper ID: 02014983

Superior Articular Facets (SAF) are present on atlas vertebra facing superomedially & they occupy most of the upper surface of the lateral mass and lie obliquely, their anterior ends being always nearer to the midline than the posterior ends. Facets are usually concave, with concavity in both longitudinal and transverse directions. The facets form an atlanto-occipital joint with occipital condyles and this joint is responsible for nodding movements. Injuries of the upper cervical spine which cause severe disabilities following trauma, have always been an interesting focus for anatomists [1]. The Atlas is the first cervical vertebra which supports the "globe" of the head [2]. The description of the SAF of the atlas vertebra, as has been found in the most of the text books of anatomy, makes no mention of its variations. Literature has revealed marked variations in the shape,

symmetry, partial or complete separations of the facets and constrictions of SAF of the atlas [3,4,5].

2. Materials and Methods

This study was carried out on 100 adult dry atlas vertebrae of unknown ages and sexes in the Department of Anatomy, DM- Wayanad Institute of Medical Sciences, Meppadi. Damaged and pathologically abnormal bones were excluded from the study. Morphological parameters like shapes, constrictions and partial or complete separations of facets were noted.

3. Observation and Results

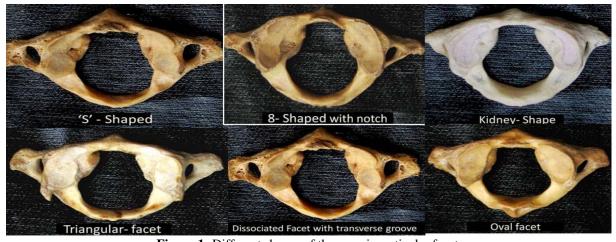


Figure 1: Different shapes of the superior articular facet

Table 1: Describing the frequency of different shapes of the superior articular facet

Year of	Population	Total Population	Shape Of the Articulating Facet	Right Superior	Left Superior	Total
Study	Studied	Studied		Articulating Facet	Articulating Facet	
2014	South	100	Oval	29	24	63
	Indian		Reniform (Kidney shape)	7	12	19
			Dumb-bell (S shape & dissociated facet)	44	41	95
			F8	10	10	20
			Triangular	10	13	23

Volume 3 Issue 7, July 2014

¹Associate Professor, Department of Anatomy, DM-Wayanad Institute of Medical Sciences, Meppadi, Wayanad. Kerala. India

²Assistant Professor, Department of Anatomy, DM-Wayanad Institute of Medical Sciences, Meppadi, Wayanad. Kerala. India

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

4. Discussion

When our study was compared with the following study the following differences and similarities were noted.

Table 2: Describing the comparison of the study with the previous studies

Worker	Year	Population	No	Shape	Right Superior	Left Superior	Total
					Articulating Facet	Articulating Facet	
Singh ⁶	1965	Varanasi	200	Oval	53	42	95
				Reniform	13	20	38
				Dumb-bell	134	138	272
				F8			
Gupta and	2000	Maharastrian	50	Oval			74
Goel ⁸				Reniform			24
Lalit M ⁵	2009	North Indian	30	Oval	10	7	17
				Reniform	6	6	12
				Dumb-bell	11	10	21
				F8	3	7	10
Present	2014	South Indian	100	Oval	29	24	63
study				Reniform (Kidney shape)	7	12	19
				Dumb-bell (S shape & dissociated facet)	44	41	95
				F8	10	10	20
				Triangular	10	13	23

The present study thus reported the shape of the SAF in a majority of the cases as a dumb-bell shape followed by an oval shape, Triangular, figure of eight (F8) and reniform. Francis⁷ (1955) gave no comparative data but defined only the shapes, whereas Singh⁶ (1965) reported a combined dumbbell and 8 shaped facet as the commonest shape and Gupta⁸ (2000) defined only two shapes and found the oval as the commonest. The difference between the percentages of the types of shapes on the right and left sides of the superior articulating facet was found to be statistically insignificant (p=0.536). None of the earlier authors have compared the parameters of both the sides in the available accessible literature. The occurrence of osteophytes in the vertebral column is well known to anatomists, clinicians and anthropologists. Osteophytes may appear on the atlas characteristically in the region of the superior articular facets. Vertebrobasilar ischaemia due to the compression of the vertebral arteries, which is caused by the osteophytes, may also occur.

5. Conclusion

The importance of such morphological studies lies in the field of kinesiology. Any variation in the articulating surfaces also affects the movements occurring at that particular joint. Future scope lies in its applications in the field of kinesiology. Also the fact that whether it's a developmental or extrinsic movement causes these variations remains the most important topic of discussion.

References

Paper ID: 02014983

- [1] Bohlman HH. Acute fractures and dislocations of the cervical spine. J Bone and Joint Surgery 1979; 61-A (8): 1119-1141.
- [2] William M, Newell RLM, Collin P. The back: cervical vertebrae. In: Standring S, Ellis H, Haely JC, Johson D, Williams A, Gray's Anatomy. 39th edition. Edinburg, London: Elsevier Churchill Livingstone; 2005: 742-746.

- [3] Shamer Singh. Variations of the superior articular facets of atlas vertebrae. Journal of Anatomy. 1965; 99: 565-71.
- [4] Schaeffer J.P. Morris's Human Anatomy, A complete systematic. Treatise. 1942; 10th ed: 85.
- [5] Lalit M, Piplani S, Kullur JS, Arora AK, Mannan R. The morphological analysis of superior articular facets of adult human atlas vertebra. Journal of Clinical and Diagnostic Research. 2011; 5(2): 274-77
- [6] Singh S. Variations of the superior articular facets of the atlas verte- brae. J Anat 1965; 99(3): 565-571.
- [7] Francis CC. Variations in the articular facets of the cervical vertebrae. Anat Rec 1955; 122: 589-602.
- [8] Gupta S, Goel A. Quantitative anatomy of the lateral masses of the atlas and axis vertebrae. Neural India 2000; 48: 120-125.

Author Profile

Dr. Girish V Patil has completed his MBBS from KIMS Hubli and has completed his M.D in Anatomy from VIMS Bellary. He has also finished his DNB Anatomy. He is presently working as an Associate Professor in the Department Of Anatomy, DM-WIMS

Meppadi, Kerala, India

Dr. Shishirkumar has completed his MBBS from KLE'S JNMC Belgaum and has completed his M.D in Anatomy from K.S.Hegde Medical Academy, Deralakatte, Mangalore. He is presently working as an Assistant Professor in the Department Of Anatomy,

DM-WIMS Meppadi, Kerala, India