
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Comparative Performance Analysis of Fast Fourier
Transform on ARM and DSP Core Using Standard

Benchmarks

Vinay B K1, Manjula N Harihar2

1M.Tech Student (SP & VLSI), Department of Electronics and Communication Engineering, Jain University, Karnataka, India

2Assistant Professor, Department of Electronics and Communication Engineering, Jain University, Karnataka, India

Abstract: This paper focuses on a sort of benchmarking and is intended to compare the performance of ARM core and DSP core using
some Standard Benchmark or program. First a Standard Benchmark “Dhrystone” was used, which is an open source benchmark. It
was tailored to be run on these cores. Later it was optimized using hardware and compiler options. As this benchmark was targeted for
non-floating point systems it does compare only one aspect of a processor. Another Benchmark DSPlib which was available on Texas
Instruments Website for public access. This library consists of various commonly used Digital Signal Processing Functions such as
FFT, IIR Filter, FIR Filter, LMS and some Vector Functions such as Vector Addition, Vector Multiplication, etc. DSPlib has separate
directory for each functions and algorithms and folder consists of header files, C program, and precompiled executable object file.
There were two version of programs; one were written using only C language contain no intrinsics and pragma directives called Natural
C Program others version was optimized for DSP core containing intrinsics function related to core and pragma directives for
optimizing the code.

Keywords: FFT, DIT, Benchmark, Dhrystone, ILP, Intrinsics, Pragma, VLIW

1. Introduction

The Benchmarking can help in critical decisions making in
some crucial businesses. Benchmarking is the process of
comparing one's business processes and performance metrics
to industry bests or best practices from other industries, but
in electronics industry Benchmarking is an act of running a
computer program (Benchmarks), a set of similar programs
in order to assess the relative performance of a system,
normally by running a number of standard tests and trials
against it. The Benchmarks or Programs that were used are
Dhrystone, Whetstone and FFT Program, vector Functions.
The Cores which are to be compared are ARM core and DSP
core. The ARM core processor is a high-performance, low-
power processor which consists of Vector Floating-Point
architecture extension is for floating-point Computation that
is fully compliant with the IEEE 754 standard. The DSP core
has advanced Very long instruction word (VLIW)
architecture with 8 functional units (two multiplier units and
six arithmetic logic units) that operate in parallel on the
whole it consists of 64 general-purpose 32-bit registers.

VLIW refers to a processor architecture designed to take
advantage of instruction level parallelism (ILP). Whereas
conventional processors mostly only allow programs that
specify instructions to be executed one after another, a
VLIW processor allows programs that can explicitly specify
instructions to be executed at the same time. This
architecture is intended to allow higher performance without
the inherent complexity of some other approaches.

2. Review of FFT Algorithm

The basic principle behind most Radix based FFT algorithms
is to exploit the symmetry properties of a complex

exponential that is the cornerstone of the Discrete Fourier
Transform (DFT), These algorithms divide the problem into
similar sub-problems (butterfly computations), and achieve a
reduction in computational complexity. All Radix algorithms
are similar in structure differing only in the core computation
of the butterflies. The FFT differs from the other algorithms
in that it uses a real kernel, as opposed to the complex
exponential kernel used by the Radix algorithms. The DITF
algorithm uses both the Decimation- In-Time (DIT), and
Decimation-In-Frequency (DIF), frameworks for separate
parts of the computation to achieve a reduction in the
computational complexity.

A. Radix-2 Decimation in Time Algorithm

Radix-2 DIT- FFT is the simplest and most common form of
the Cooley–Tukey algorithm, although highly optimized
Cooley–Tukey implementations typically use other forms of
the algorithm as described below. Radix-2 DIT divides a
DFT of size N into two interleaved DFTs (hence the name
"radix-2") of size N/2 with each recursive stage. The discrete
Fourier transform is defined by the formula

exX
nk

N

iN

n
nk

21

0

 (1)

Where k is an integer ranging from 0 to N-1.

Radix-2 DIT first computes the DFTs of the even-indexed
inputs and odd-indexed inputs and then combines those two
results to produce the DFT of the whole sequence. This idea
can then be performed recursively to reduce the overall
runtime to (Nlog N). This simplified form assumes that N is a
power of two.

Paper ID: 02014825 2770

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The Radix-2 DIT algorithm rearranges the DFT of the
function xn into two parts: a sum over the even-numbered
indices n=2m and a sum over the odd-numbered indices
n=2m+1.

exX
km

N

iN

m
mk

)2(
212/

0
2

 + ex

km
N

iN

m
m

)12(
212/

0
12

 (2)

The full radix-2 decimation-in-time decomposition is
illustrated in Figure1 using the simplified butterflies involves
M=log 2N stages, each with N/2 butterflies per stage. The
total computational cost of radix-2 algorithm is N 2log 2N
complex multipliers and N log 2N complex adders.

Figure 1: Radix-2 Decimation-in-Time FFT algorithm for a

length-8 signal

B. Radix-4 Decimation in Time Algorithm

The Radix-4 algorithm is very similar to the Radix-2
algorithm in concept. Instead of dividing the DFT
computation into halves as in Radix-2, a four-way split is
used. The N-point input sequence is split into four
subsequences. The decimation process is similar to the
RAD2 algorithm, and uses v=log4N stages, where each stage
has N/4 butterflies. TheRadix-4 butterfly involves 8 complex
additions and 3 complex multiplications, or a total of 34
floating point operations. Thus, the total number of floating
point operations involved in the Radix-4 computation of an
N-point DFT is 4.25log2N, which is 15% less than the
corresponding value for the Radix-2 algorithm.

Figure 2: Signal flow graph of radix-4 DIT butterfly.

Radix-4 algorithms have a computational advantage over
radix-2 algorithms because one radix-4 butterfly does the
work of four radix-2 butterflies, and the radix-4 butterfly
requires only three complex multipliers compared to four
complex multipliers of four radix-2 butterflies. Radix-2 and
radix-4 FFTs are the most commonly used algorithms, it is
also possible to design FFTs with even higher radix
butterflies. The reason they are not often used is because the
control and dataflow of their butterflies are so complicated
that the additional efficiency gained is lost.

The DITF algorithm is based on the observation that in a
DIF implementation of a Radix-2 algorithm, most of the
computations (especially complex multiplications), are
performed during the initial stages of the algorithm. In the
DIT implementation of the Radix-2 algorithm, the
computations are concentrated towards the final stages of the
algorithm. Thus, starting with the DIT implementation and
then shifting to the DIF implementation at some transition
stage intuitively seems to be a computation saving process.

3. Benchmarking Criteria

Most preceding FFT complexity studies have been
conducted on special purpose hardware such as digital signal
processing. Typically, the primary benchmarking criteria
have been the number of mathematical operations
(multiplications and additions), and/or the overall
computation speed. The efficiency of an algorithm is most
influenced by the arithmetic complexity, usually expressed
in terms of a count of real multiplications and additions.
However, on general purpose computers this is not a very
good benchmark and other factors need to be considered as
well. For instance, the issue of memory usage is very
important for memory constrained applications.

A. Number of Computations
Since many general purposes CPUs have significantly
different speeds on floating point and integer operations, we
decided to individually account for floating point and integer
arithmetic. It is a well-known fact that most new
architectures compute floating point operations more
efficiently than integer operations. Also, most indexing and
loop control is done using integer arithmetic. Therefore the

Paper ID: 02014825 2771

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

integer operations count directly measures the cost of
indexing and loop control. Many FFT algorithms require a
large number of divisions by- two operations which is
efficiently accomplished by using a binary shift operator.

B. Computation Speed
In most present-day applications for general purpose
computers, with easy availability of faster CPUs and
memory not being a primary constraint, the fastest algorithm
is by far treated as the best algorithm. Thus, a common
choice to rank order algorithms is by their computation
speed. One of the classic trade-offs seen in algorithm
development is that of memory usage versus speed. In most
portable signal processing applications, the FFT is a core
computational component. However, few applications can
afford a large memory space for evaluating FFTs. While
memory usage is important for specification of hardware,
memory accesses also account for a significant portion of
computation time.

4. Benchmarking Results and Analysis

Each of the algorithms was implemented under a common
framework using common functions for operations such as
bit-reversal and lookup table generation so that differences
in performance could be attributed solely to the efficiency of
the algorithms on different cores. Following this, we
comprehensively benchmarked each algorithm according to
the criteria discussed in the previous section. Computation
speed is typically the most prominent aspect of an FFT
algorithm in current DSP applications. The computation
speed of an algorithm for large data sizes can often be
heavily dependent on the clock speed, RAM size, cache size
and the operating system. Hence, these factors must be taken
into account. In this paper we try to bring out the comparison
between ARM and DSP cores for number of CPU Cycles
required to execute the FFT algorithm using various memory
units.

FFT algorithm both radix-2 and radix-4 were implemented
on ARM and DSP cores for comparison in three different
variations of coding i.e. in Natural C, Optimized C and in
Assembly Language. All these variations were
experimentally carried on both On Chip Memory and on
Cache memory. In Natural C program none of the intrinsics,
core specific header files and optimizing directives options
were used whereas in optimized c program all of these were
used.

Figure 3: Radix-2 FFT on DSP core using On chip Memory
at 600 MHz

Figure 4: Radix-4 FFT on DSP core using On chip Memory

at 600 MHz

Figure 5: Radix-2 FFT on DSP core using Cache Memory at

600 MHz

Figure 6: Radix-4 FFT on DSP core using Cache Memory at

600 MHz

Paper ID: 02014825 2772

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 6, June 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 7: Radix-2 FFT on DSP core and ARM core 600
MHz

Figure 8: Radix-4 FFT on DSP core and ARM core at 600

MHz

5. Conclusion

Some SOC’s include both ARM and DSP cores and
subsystems. In order to reduce redundancy at performing
some common required tasks at comparable efficiency and
speed, their performance metrics will be compared and
analyzed and then decision could be taken which could save
cost, area, and power consumption. The scores for
Dhrystone conclude that ARM core is better than DSP for
running non-numeric programs like Dhrystone. The scores
for FFT conclude that DSP core is better than ARM core
when it comes to execution of non vectorizable floating
point calculations. The scores for vector functions conclude
that ARM core gives a good combat to DSP in a program
which involves vector operations.

References

[1] J. Cooley and J. Tuckey, “An algorithm for the machine

calculation of the complex fourier series,” Math. Comput.,
vol. 19, pp. 297–301, Apr. 1965.

[2] Tran-Thong and B. Liu, “Fixed-point fast fourier transform
error analysis,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. 24, no. 6, pp. 563– 573, Dec. 1976.

[3] Granata, M. Conner, and R. Tolimieri, “Recursive fast
algorithms and the role of the tensor product,” IEEE
Trans. Signal Processing, vol. 40, no. 12, pp. 2921–2930,
Dec. 1992.

[4] S. F. Gorman and J. M. Wills, “Partial column fft
pipelines,” IEEE Trans. IEEE Trans. Circuits Syst. II, vol.
42, no. 6, pp. 414–423, June 1995.

[5] S. He and M. Torkelson, “Design and implementation of a
1024-point pipeline fft processor,” in Proc. IEEE Custom
Integrated Circuits Conf., Santa Clara, CA, May 11-14
1998, vol. 2, pp. 131–134.

[6] E. H. Wold and A. M. Despain, “Pipeline and parallel-
pipeline fft processors for vlsi implementations,” IEEE
Trans. Comput., vol. 33, no. 5, pp. 414– 426, May 1984.

[7] M. Hasan and T. Arslan, “Implementation of low power fft
processor cores using a novel order-base processing
scheme,” in Proc. IEEE Circuits Devices Syst., June 2003,
vol. 150, pp. 149–154.

[8] M. Wosnitza, M. Cavadini, M. Thaler, and G. Tr¨oster, “A
high precision 1024-point fft processor for 2d

convolution,” in Dig. Tech Papers IEEE Solid-State
Circuits Conf., San Francisco, CA, Feb. 5-7 1998, pp.
118–119.

[9] A. M. Despain, “Fourier transform computers using cordic
iterations,” IEEE Trans. Comput., vol. 23, no. 10, pp. 993–
1001, Oct 1974.

[10] A. Berkeman, V. Owall, and M. Torkelson, “A low logic
depth complex multiplier using distributed arithmetic,”
IEEE Solid-State Circuits, vol. 35, no. 4, pp. 656–659,
Apr. 2000.

[11] L. Wanhammar, DSP Integrated Circuits, CA: Academic
Press, San Diego, 1999.

[12] H.S. Hou, (1987), The Fast Hartley Transform Algorithm,
IEEE Transactions on Computers, pp. 147-155, February.

[13] P. Duhamel and H. Hollomann, (1984), Split Radix FFT
Algorithm, Electronic Letters, vol. 20, pp. 14-16, January.

[14] H. Guo, G.A. Sitton, and C.S. Burrus, (1994), The Quick
Discrete Fourier Transform, Proceedings of International
Conference on Acoustics, Speech and Signal Processing,
vol. 3, pp. 445-447, Adelaide, Australia.

[15] A. Saidi, (1994), Decimation-In-Time Frequency FFT
Algorithm, Proceedings of International Conference on
Acoustics, Speech and Signal Processing, vol. 3, pp. 453-
456, Adelaide, Australia.

[16] C.S. Burrus and T.W. Parks, (1985), DFT/FFT and
Convolution Algorithms: Theory and Implementation,
John Wiley and Sons, New York, NY, USA.

[17] J.G. Proakis, D.G. Manolakis, (1992), Digital Signal
Processing - Principles, Algorithms and Applications,
Macmillan Publishing Company, NY, USA, 1992.

[18] A.V. Oppenheim, R.W. Schafer, (1989), Digital Signal
Processing, Prentice-Hall International Inc., Englewood
Cliffs, NJ, USA.

[19] R.N. Bracewell, (1990), Assessing the Hartley Transform,
IEEE Transactions on Acoustics Speech and Signal
Processing, pp. 2174-2176.

[20] http://www.ti.com/sc/docs/dsps/literatu.htm
[21] http://www.lsidsp.com/c6x/tech/wpsy nop.htm

Author Profile

Mr. Vinay BK is a student in the Department of
Electronics and Communication Engineering, School
of Engineering and Technology, Jain University,
Karnataka, India. He received his Bachelor degree in
Electronics & Communication Engineering from VTU

in 2012. He is pursuing M. Tech (SP and VLSI Design) in
Electronics and Communication Engineering, Jain University,
Karnataka, India. His research interest includes Low power VLSI
Design; Analog and Mixed signal VLSI Design, Circuit design and
simulations, DSP, and Embedded Systems Design, FPGA
prototyping, Emulation, Verification and Validation.

Manjula. N. Harihar is a Assistant Professor in the
Department of Electronics and Communication
Engineering, School of Engineering, Jain University,
Bangalore. She obtained her Bachelor degree in

Electronics and Communication Engineering from S.T.J Institute of
Technology, Ranebennur. Master degree in communication
Systems from P.D.A College of Engineering, Gulbarga, Karnataka,
India. She is pursuing Ph.D in Electronics and Communication
Engineering, Jain University, Bangalore. Her research interest
includes Image Processing, VLSI, Neural Networks and Image
Processing.

Paper ID: 02014825 2773

