
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Performance Based Evaluation of New Software
Testing Using Artificial Neural Network

Jogi John1, Mangesh Wanjari2

 1Priyadarshini College of Engineering, Nagpur, Maharashtra, India

2Shri Ramdeobaba College of Engineering & Management, Katol, Nagpur, Maharashtra, India

Abstract: Today, testing is the most challenging and dominating activity used by industry, therefore, improvement in its effectiveness,
both with respect to the time and resources, is taken as a major factor by many researchers. Software testing forms an integral part of the
software development life cycle. Since the objective of testing is to ensure the conformity of an application to its specification, a test
“Automated Secure Agent” is needed to determine whether a given test case exposes a fault or not. Using an automated Agent to support
the activities of human testers can reduce the actual cost of the testing process and the related maintenance costs. In this paper, we present
a new concept of using an artificial neural network as an automated agent for a tested software system. A neural network is trained by the
back propagation algorithm on a set of test cases applied to the original version of the system. The network training is based on the
“black-box” approach, since only inputs and outputs of the system are presented to the algorithm. The trained network can be used as an
artificial Agent for evaluating the correctness of the output produced by new and possibly faulty versions of the software. We present
experimental results of using a two-layer neural network to detect faults within mutated code of a small credit approval application. The
results appear to be promising for a wide range of injected faults.

Keywords: Test Data, Software Testing, ANN, Black-Box, White-Box, Regression Test, Automated Secure Agent.

1. Introduction

Testing software is essential to ensure quality in IT systems.
The main objective of software testing is to determine how
well an evaluated application conforms to its specification.
Two common approaches to software testing are black-box
and white-box testing. While the white-box approach uses
the actual code of the tested program to perform its analysis,
the black-box approach checks the program output against
the input without taking into account its inner Workings.
[1]Software testing is divided into three stages: generation of
test data, application of the data to the software being tested,
and evaluation of the results. Traditionally, software testing
was done manually by a human tester who chose the test
cases and analyzed the results.[2] However, due to the
increase in the number and size of the programs being tested
in present day, the burden of the human tester is increased,
and alternative, automated software testing methods are
needed. While automated methods appear to take over the
role of the human tester, the issues of reliability and the
capabilities of the software testing methods still need to be
resolved.[3] Thus, testing is an important aspect in the
design of a software product. Both the white-box and black-
box approaches to software testing are not without their
limitations. Voas and McGraw [1] noted that present-day
software systems are too large to be tested by the white-box
approach as a single entity; instead, white-box testing
techniques work at the subsystem level. One of the
limitations of the white-box testing approach is that it is not
capable of analyzing certain faults, one of which is testing
for missing code.[4] The main problem associated with the
black-box approach is to generate test cases that are more
likely to detect faults.[4] “Fault-based testing” is the term
used to refer to methods that base the selection of test data
on the detection of specific faults,[4] and is a type of white-
box approach as it uses the code of the tested program.[1]
Mutation analysis is a fault-based technique that generates

mutant versions of the program that is being tested.[5]A test
set is applied to every mutant program and is evaluated to
determine whether the test set is able to distinguish between
the original and mutant versions.

2. Background Work

Artificial neural networks (ANNs) have been used in the
past to handle several aspects of software testing.
Experiments have been conducted to evaluate the
effectiveness of generating test cases capable of exposing
faults, [6] to use principle components analysis to find faults
in a system, [7] to compare the capabilities of neural
networks to other fault-exposing techniques, [8], [9] and to
find faults in failure data. [10] In this synopsis, new
application of neural networks as an “automated secure
agent” for a tested system is presented. A multi-layer neural
network is trained on the original software application by
using randomly generated test data that conform to the
specification. The neural network can be trained within a
reasonable accuracy of the original program, though it may
be unable to classify the test data 100 percent correctly. In
effect, the trained neural network becomes a simulated
model of the software application. When new versions of the
original application are created and “regression testing” is
required, the tested code is executed on the test data to yield
outputs that are compared with those of the neural network.
Here it is assumed that the new versions do not change the
existing functions, which means that the application is
supposed to produce the same output for the same inputs. A
comparison tool then makes the decision whether the output
of the tested application is incorrect or correct based on the
network activation functions. Figure 1 presents the overview
of the proposed testing methodology for security check.
Using an ANN-based model of the software, rather than
running the original version of the program, may be
advantageous for a variety of reasons. First, the original

Paper ID: 020132196 1529

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

version may become unusable, due to a change in the
hardware platform or the OS environment. Another usability
problem may be associated with a third-party application
having an expired license or other restrictions. Second, most
inputs and outputs of the original application may be non-
critical at a given stage of the testing process, and, thus,
using a neural network for an automated modeling of the
original application may secure a significant amount of
computer resources. Third, saving an exhaustive set of test
cases with the outputs of the original version may be
infeasible for real-world applications. [1] Finally, the
original version is never guaranteed to be fault-free, and
comparing its output to the output of a new version may
overlook the cases where both versions do not function
properly. Neural networks provide an additional parameter
associated with every output, the activation function, which,
as we show below, can be used to evaluate the reliability of
the tested output.

3. Proposed Model

Figure 1: Overview of the Evolution Phase

The comparison tool is employed as an independent method
of comparing the results from the neural network and the
results of the tested versions of the credit approval
application. An objective automated approach is required to
ensure that the results have not been affected by external
factors. This in effect replaces the human tester, who may be
biased by having prior knowledge of the original
application.

Table 1: Each output has a defined category.
 Tested application output
ANN output Correct Wrong

Correct
1 2

True positive True negative

Wrong
4 3

False positive False negative

The tool uses the output of a neural network and the output
of the tested application. The distance between the outputs is
taken as the absolute difference between the value of the
winning node for each output and the corresponding value in
the application. Since a sigmoid activation function is used
to provide the network outputs, the activation value of the
winning output nodes is a number between 0.0 and 1.0. The
corresponding value of the application output is equal to 1.0
if the predicted and actual outputs are identical. Otherwise, it
is equal to 0.0. Thus, the distance covers a range between

0.0 and 1.0, and we use this value to determine whether the
faulty application has generated an invalid or correct result.

Table I displays the four possible categories where each
output can be placed. Since the ANN is only an
approximation of the actual system, some of its outputs may
be incorrect. On the other hand, the tested application itself
may produce errors, which is the main reason for the testing
process. If the ANN output is correct while the output of the
tested application is wrong, the evaluation of the comparison
tool is classified as being a true negative or a category of 2,
i.e., the determination that the output of the application is an
actual error. Similarly, the remaining three classifications
represent the other possibilities for the output categorization.
Each output arising from the neural network and the tested
program is evaluated in this fashion. Although, the main
interest is in finding the wrong outputs (categories 2 and 3),
there is also no visible difference when the network output is
the same as the output of the tested program (categories 1
and 3). Categories 2 and 4 are also similar in that regard, as
either the network output is correct or the tested program
output is correct, with the former being more likely. The
ANN is trained to simulate the original application; however
it is not capable of classifying the original data 100%
correctly due to the problem of error convergence. Thus,
consider only cases where the tested application output is
wrong: categories 2 and 3, using the notation of Table I.
When the outputs are compared with one another, they are
either the same or different. Consequently, categories 1 and
3 have to be distinguished from one another by the
comparison tool; a similar separation is required for
categories 2 and 4. Thus, the need for calculating the
distance is justified.

4. Design of Credit Card Approval Program

The sample program that is being tested in this experiment is
a small credit approval application. The application can be
considered representative of a wide range of business
applications, where a few critical outputs depend on a large
number of inputs. The training data that are used throughout
this paper are randomly generated using the specification of
the application and the description of the attributes. A more
detailed description and the type of each attribute can be
viewed in Table II, and Table III provides a sample data set.

Paper ID: 020132196 1530

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Table 2: Input attributes of the data
Name of the

attribute
Data
type

Attribute
type Details

Serial ID integer Input unique for each customer

Citizenship integer Input
0: American
1: Others

State integer Input
0: Florida
1: other states

Region integer Input 0–6 for different regions in U.S.

Income class integer Input

0 if income p.a. < $10k
1 if income p.a. ≥ $10k
2 if income p.a. ≥ $25k
3 if income p.a. ≥ $50k

Sex integer Input
0: Female
1: Male

Age integer Input 1–100
Number of
dependents

integer Input 0–4

Marital status integer Input
0: Single
1: Married

Credit amount integer Output ≥ 0
Credit

approved
integer Output

0: No
1: Yes

Table 3: Sample data used during training (before
preprocessing)

For example, customer 2 of Table III is not an American
citizen, does not live in Florida, is 18 years of age, is male,
lives in region 4, has an annual income greater than $10,000,
and is single with one dependent. Credit has been approved
for this client for an amount of $1,200. Since a neural
network can be trained only on numeric values, all
categorical attributes (citizenship, state, and so on) were
converted to numeric form. The training data consist of 500
records (test cases); the additional 1,000 test cases used for
evaluating the mutated versions of the original application
also follow the same format. The second data set is larger
than the first to ensure that there were sufficient data to find
faults in the tested program.

A detailed description of the application logic is necessary
for the reader to understand the type of faults that are
injected into the application though this logic was “hidden”
from the back propagation training algorithm. The algorithm
that the application follows can be found in Figure 1. The
structure of the application consists of a series of layered
conditional statements. This provides the opportunity to
examine the effects of the faults over a range of possibilities.
The types of faults that have been injected into our
experiment consist of minor changes to the conditional
statements. These include a change in operator and a change
in the values used in the conditional statements. Several
assumptions are made when applying the faults to the
application. Only one change is made at a time, and the fault
is either a sign change or an error in the numerical value
used in the comparison. Consequently, the analysis of the
outputs was conducted independently of each other.

5. Credit Card Application Algorithm

Se
ri

al
 ID

 N
um

be
r

C
iti

ze
ns

hi
p

St
at

e
Re

gi
on

In

co
m

e
cl

as
s

Se
x

Ag
e

N
um

be
r o

f
D

ep
en

de
nt

s
M

ar
ita

l s
ta

tu
s

Am
ou

nt

C
re

di
t a

pp
ro

ve
d

1 0 1 3 1 1 20 1 1 860 0
2 1 1 4 1 1 18 1 0 1200 0
3 0 0 5 1 0 15 0 0 0 1
4 0 0 3 1 1 53 0 1 1400 0
5 0 0 4 2 1 6 2 0 0 1
6 1 1 3 0 1 95 1 0 400 0
7 1 0 5 2 1 78 2 0 0 1
8 0 0 2 0 0 84 2 0 1650 0
9 0 1 3 2 0 28 3 1 1370 0

10 0 0 2 2 0 74 2 0 1950 0

Paper ID: 020132196 1531

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

6. Back Propagation Algorithm for Testing

Paper ID: 020132196 1532

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Proposed Model In MATLAB

7. Experiment Result

After loading the program as shown in the Fig 3 the faults
are injected in the loaded credit card program. After
injecting the faults the application program output is coming
out to be wrong or correct. The ANN model is used to check
the output after comparing the result it will listed out the
faults which is been tested. Mean squared normalized error
performance function by square rooting the ANN output
square –program output square.

Table 1: List of Faults Tested

The tables include the injected fault number, the number of
correct outputs and incorrect outputs as determined by the
“Automated Secure Agent” and the percentages for the

Paper ID: 020132196 1533

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

correct outputs classified as being incorrect and incorrect
outputs

8. Conclusions

In this paper, we have used a neural network as an
“automated Secure Agent” for testing a real application, and
applied mutation testing to generate faulty versions of the
original program. We then used a comparison tool to
evaluate the correctness of the obtained results based on the
absolute difference between the two outputs. The neural
network is shown to be a promising method of testing a
software application provided that the training data have a
good coverage of the input range. The back propagation
method of training the neural network is a relatively rigorous
method capable of generalization, and one of its properties
ensures that the network can be updated by learning new
data. As the software that the network is trained to simulate
is updated, so too can the trained neural network learn to
classify the new data. Thus, the neural network is capable of
learning new versions of evolving software. The benefits
and limitations of the approach presented in this paper need
to be fully studied on additional software systems involving
a larger number of inputs and outputs. However, as most of
the methodology introduced in this paper has been
developed from other known techniques in artificial
intelligence, it can be used as a solid basis for future
experimentation. One possible application can include
generation of test cases that are more likely to cause faults.
The heuristic used by the comparison tool may be modified
by using more than two thresholds or an overlap of
thresholds by fuzzification. The method can be further
evaluated by introducing more types of faults into a tested
application.

References

[1] Voas JM, McGraw G. Software Fault Injection; 19985
[2] Choi J, Choi B. Test agent system design. In: 1999

IEEE International Fuzzy Systems Conference
Proceedings; August 22–25, 1999.

[3] G. McGraw, “Building Secure Software: A Difficult
but Critical Step in Protecting Your Business,” Cigital,
White Paper, available at:
http://www.cigital.com/whitepapers/

[4] Weyuker E, Goradia T, Singh A. Automatically
generating test data from a boolean specification.IEEE
Transactions on Software Engineering 1994;SE-
20(5):353–363.

[5] DeMillo RA, Offutt AJ. Constraint-based automatic
test data generation. IEEE Transactions on Software
Engineering 1991; SE-17(9):900–910.

[6] Anderson C, von Mayrhauser A, Mraz R. On the use of
neural networks to guide software testing activities. In:
Proceedings of ITC’95, the International Test
Conference; October21–26, 1995.

[7] Khoshgoftaar TM, Szabo RM.Using neural networks
to predict software faults during testing.IEEE
Transactions on Reliability 1996; 45(3):456–462.

[8] Khoshgoftaar TM, Allen EB, Hudepohl JP, Aud SJ.
Application of neural networks to software quality
modeling of a very large telecommunications system.

IEEE Transactions on Neural Networks 1997;
8(4):902–909.

[9] Kirkland LV, Wright RG. Using neural networks to
solve testing problems. IEEE Aerospace and
Electronics Systems Magazine 1997; 12(8):36–40.

[10] Sherer SA. Software fault prediction. Journal of
Systems and Software 1995; 29(2):97–105.

Paper ID: 020132196 1534

