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Abstract: Today, testing is the most challenging and dominating activity used by industry, therefore, improvement in its effectiveness, 
both with respect to the time and resources, is taken as a major factor by many researchers. Software testing forms an integral part of the 
software development life cycle. Since the objective of testing is to ensure the conformity of an application to its specification, a test 
“Automated Secure Agent” is needed to determine whether a given test case exposes a fault or not. Using an automated Agent to support 
the activities of human testers can reduce the actual cost of the testing process and the related maintenance costs. In this paper, we present 
a new concept of using an artificial neural network as an automated agent for a tested software system. A neural network is trained by the 
back propagation algorithm on a set of test cases applied to the original version of the system. The network training is based on the 
“black-box” approach, since only inputs and outputs of the system are presented to the algorithm. The trained network can be used as an 
artificial Agent for evaluating the correctness of the output produced by new and possibly faulty versions of the software. We present 
experimental results of using a two-layer neural network to detect faults within mutated code of a small credit approval application. The 
results appear to be promising for a wide range of injected faults. 
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1. Introduction 
 

Testing software is essential to ensure quality in IT systems. 
The main objective of software testing is to determine how 
well an evaluated application conforms to its specification. 
Two common approaches to software testing are black-box 
and white-box testing. While the white-box approach uses 
the actual code of the tested program to perform its analysis, 
the black-box approach checks the program output against 
the input without taking into account its inner Workings. 
[1]Software testing is divided into three stages: generation of 
test data, application of the data to the software being tested, 
and evaluation of the results. Traditionally, software testing 
was done manually by a human tester who chose the test 
cases and analyzed the results.[2] However, due to the 
increase in the number and size of the programs being tested 
in present day, the burden of the human tester is increased, 
and alternative, automated software testing methods are 
needed. While automated methods appear to take over the 
role of the human tester, the issues of reliability and the 
capabilities of the software testing methods still need to be 
resolved.[3] Thus, testing is an important aspect in the 
design of a software product. Both the white-box and black-
box approaches to software testing are not without their 
limitations. Voas and McGraw [1] noted that present-day 
software systems are too large to be tested by the white-box 
approach as a single entity; instead, white-box testing 
techniques work at the subsystem level. One of the 
limitations of the white-box testing approach is that it is not 
capable of analyzing certain faults, one of which is testing 
for missing code.[4] The main problem associated with the 
black-box approach is to generate test cases that are more 
likely to detect faults.[4] “Fault-based testing” is the term 
used to refer to methods that base the selection of test data 
on the detection of specific faults,[4] and is a type of white-
box approach as it uses the code of the tested program.[1] 
Mutation analysis is a fault-based technique that generates 

mutant versions of the program that is being tested.[5]A test 
set is applied to every mutant program and is evaluated to 
determine whether the test set is able to distinguish between 
the original and mutant versions. 
 
2. Background Work 

 

Artificial neural networks (ANNs) have been used in the 
past to handle several aspects of software testing. 
Experiments have been conducted to evaluate the 
effectiveness of generating test cases capable of exposing 
faults, [6] to use principle components analysis to find faults 
in a system, [7] to compare the capabilities of neural 
networks to other fault-exposing techniques, [8], [9] and to 
find faults in failure data. [10] In this synopsis, new 
application of neural networks as an “automated secure 
agent” for a tested system is presented. A multi-layer neural 
network is trained on the original software application by 
using randomly generated test data that conform to the 
specification. The neural network can be trained within a 
reasonable accuracy of the original program, though it may 
be unable to classify the test data 100 percent correctly. In 
effect, the trained neural network becomes a simulated 
model of the software application. When new versions of the 
original application are created and “regression testing” is 
required, the tested code is executed on the test data to yield 
outputs that are compared with those of the neural network. 
Here it is assumed that the new versions do not change the 
existing functions, which means that the application is 
supposed to produce the same output for the same inputs. A 
comparison tool then makes the decision whether the output 
of the tested application is incorrect or correct based on the 
network activation functions. Figure 1 presents the overview 
of the proposed testing methodology for security check. 
Using an ANN-based model of the software, rather than 
running the original version of the program, may be 
advantageous for a variety of reasons. First, the original 
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version may become unusable, due to a change in the 
hardware platform or the OS environment. Another usability 
problem may be associated with a third-party application 
having an expired license or other restrictions. Second, most 
inputs and outputs of the original application may be non-
critical at a given stage of the testing process, and, thus, 
using a neural network for an automated modeling of the 
original application may secure a significant amount of 
computer resources. Third, saving an exhaustive set of test 
cases with the outputs of the original version may be 
infeasible for real-world applications. [1] Finally, the 
original version is never guaranteed to be fault-free, and 
comparing its output to the output of a new version may 
overlook the cases where both versions do not function 
properly. Neural networks provide an additional parameter 
associated with every output, the activation function, which, 
as we show below, can be used to evaluate the reliability of 
the tested output. 
 
3. Proposed Model 

 

 
Figure 1: Overview of the Evolution Phase 

The comparison tool is employed as an independent method 
of comparing the results from the neural network and the 
results of the tested versions of the credit approval 
application. An objective automated approach is required to 
ensure that the results have not been affected by external 
factors. This in effect replaces the human tester, who may be 
biased by having prior knowledge of the original 
application. 

Table 1: Each output has a defined category. 
  Tested application output
ANN output Correct Wrong 

Correct 
1 2 

True positive True negative

Wrong 
4 3 

False positive False negative
 
The tool uses the output of a neural network and the output 
of the tested application. The distance between the outputs is 
taken as the absolute difference between the value of the 
winning node for each output and the corresponding value in 
the application. Since a sigmoid activation function is used 
to provide the network outputs, the activation value of the 
winning output nodes is a number between 0.0 and 1.0. The 
corresponding value of the application output is equal to 1.0 
if the predicted and actual outputs are identical. Otherwise, it 
is equal to 0.0. Thus, the distance covers a range between 

0.0 and 1.0, and we use this value to determine whether the 
faulty application has generated an invalid or correct result.  
 
Table I displays the four possible categories where each 
output can be placed. Since the ANN is only an 
approximation of the actual system, some of its outputs may 
be incorrect. On the other hand, the tested application itself 
may produce errors, which is the main reason for the testing 
process. If the ANN output is correct while the output of the 
tested application is wrong, the evaluation of the comparison 
tool is classified as being a true negative or a category of 2, 
i.e., the determination that the output of the application is an 
actual error. Similarly, the remaining three classifications 
represent the other possibilities for the output categorization. 
Each output arising from the neural network and the tested 
program is evaluated in this fashion. Although, the main 
interest is in finding the wrong outputs (categories 2 and 3), 
there is also no visible difference when the network output is 
the same as the output of the tested program (categories 1 
and 3). Categories 2 and 4 are also similar in that regard, as 
either the network output is correct or the tested program 
output is correct, with the former being more likely. The 
ANN is trained to simulate the original application; however 
it is not capable of classifying the original data 100% 
correctly due to the problem of error convergence. Thus, 
consider only cases where the tested application output is 
wrong: categories 2 and 3, using the notation of Table I. 
When the outputs are compared with one another, they are 
either the same or different. Consequently, categories 1 and 
3 have to be distinguished from one another by the 
comparison tool; a similar separation is required for 
categories 2 and 4. Thus, the need for calculating the 
distance is justified.  
 
4. Design of Credit Card Approval Program 
 
The sample program that is being tested in this experiment is 
a small credit approval application. The application can be 
considered representative of a wide range of business 
applications, where a few critical outputs depend on a large 
number of inputs. The training data that are used throughout 
this paper are randomly generated using the specification of 
the application and the description of the attributes. A more 
detailed description and the type of each attribute can be 
viewed in Table II, and Table III provides a sample data set.  
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Table 2: Input attributes of the data
Name of the 

attribute 
Data
type

Attribute 
type Details 

Serial ID integer Input unique for each customer 

Citizenship integer Input 
0: American 
1: Others 

State integer Input 
0: Florida 
1: other states 

Region integer Input 0–6 for different regions in U.S.

Income class integer Input 

0 if income p.a. < $10k 
1 if income p.a. ≥ $10k 
2 if income p.a. ≥ $25k 
3 if income p.a. ≥ $50k 

Sex integer Input 
0: Female 
1: Male 

Age integer Input 1–100 
Number of 
dependents 

integer Input 0–4 

Marital status integer Input 
0: Single 
1: Married 

Credit amount integer Output ≥ 0 
Credit 

approved 
integer Output 

0: No 
1: Yes 

Table 3: Sample data used during training (before 
preprocessing) 

 

For example, customer 2 of Table III is not an American 
citizen, does not live in Florida, is 18 years of age, is male, 
lives in region 4, has an annual income greater than $10,000, 
and is single with one dependent. Credit has been approved 
for this client for an amount of $1,200. Since a neural 
network can be trained only on numeric values, all 
categorical attributes (citizenship, state, and so on) were 
converted to numeric form. The training data consist of 500 
records (test cases); the additional 1,000 test cases used for 
evaluating the mutated versions of the original application 
also follow the same format. The second data set is larger 
than the first to ensure that there were sufficient data to find 
faults in the tested program. 
 
A detailed description of the application logic is necessary 
for the reader to understand the type of faults that are 
injected into the application though this logic was “hidden” 
from the back propagation training algorithm. The algorithm 
that the application follows can be found in Figure 1. The 
structure of the application consists of a series of layered 
conditional statements. This provides the opportunity to 
examine the effects of the faults over a range of possibilities. 
The types of faults that have been injected into our 
experiment consist of minor changes to the conditional 
statements. These include a change in operator and a change 
in the values used in the conditional statements. Several 
assumptions are made when applying the faults to the 
application. Only one change is made at a time, and the fault 
is either a sign change or an error in the numerical value 
used in the comparison. Consequently, the analysis of the 
outputs was conducted independently of each other. 
 

5. Credit Card Application Algorithm
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1 0 1 3 1 1 20 1 1 860 0
2 1 1 4 1 1 18 1 0 1200 0
3 0 0 5 1 0 15 0 0 0 1
4 0 0 3 1 1 53 0 1 1400 0
5 0 0 4 2 1 6 2 0 0 1
6 1 1 3 0 1 95 1 0 400 0
7 1 0 5 2 1 78 2 0 0 1
8 0 0 2 0 0 84 2 0 1650 0
9 0 1 3 2 0 28 3 1 1370 0

10 0 0 2 2 0 74 2 0 1950 0
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6. Back Propagation Algorithm for Testing 
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Figure 2: Proposed Model In MATLAB 

7. Experiment Result 
 
After loading the program as shown in the Fig 3 the faults 
are injected in the loaded credit card program. After 
injecting the faults the application program output is coming 
out to be wrong or correct. The ANN model is used to check 
the output after comparing the result it will listed out the 
faults which is been tested. Mean squared normalized error 
performance function by square rooting the ANN output 
square –program output square. 

 

Table 1: List of Faults Tested 

 
 
The tables include the injected fault number, the number of 
correct outputs and incorrect outputs as determined by the 
“Automated Secure Agent” and the percentages for the 
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correct outputs classified as being incorrect and incorrect 
outputs 

 
8. Conclusions

In this paper, we have used a neural network as an 
“automated Secure Agent” for testing a real application, and 
applied mutation testing to generate faulty versions of the 
original program. We then used a comparison tool to 
evaluate the correctness of the obtained results based on the 
absolute difference between the two outputs. The neural 
network is shown to be a promising method of testing a 
software application provided that the training data have a 
good coverage of the input range. The back propagation 
method of training the neural network is a relatively rigorous 
method capable of generalization, and one of its properties 
ensures that the network can be updated by learning new 
data. As the software that the network is trained to simulate 
is updated, so too can the trained neural network learn to 
classify the new data. Thus, the neural network is capable of 
learning new versions of evolving software. The benefits 
and limitations of the approach presented in this paper need 
to be fully studied on additional software systems involving 
a larger number of inputs and outputs. However, as most of 
the methodology introduced in this paper has been 
developed from other known techniques in artificial 
intelligence, it can be used as a solid basis for future 
experimentation. One possible application can include 
generation of test cases that are more likely to cause faults. 
The heuristic used by the comparison tool may be modified 
by using more than two thresholds or an overlap of 
thresholds by fuzzification. The method can be further 
evaluated by introducing more types of faults into a tested 
application. 
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