
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

A Survey on Test Case Reduction Techniques
Vaibhav Chaurasia1, Yogita Chauhan2, Thirunavukkarasu K.3

1, 2 M. Tech.-Student, School of Computing Science and Engineering, Galgotias University, Uttar Pradesh, India

3Assistant Professor, School of Computing Science and Engineering, Galgotias University, Uttar Pradesh, India

Abstract: Test case reduction is traditional in nature. It is very old field on which engineers work from the beginning of the third
generation. Reduction is not an easy task, several techniques in this field is developed. There are several challenges faced by the
engineers, for instance, cost and time. The reduction is the nightmare of the developer, as, the level of testing is increases, techniques of
reduction also becomes more complex. An old technique teaches us the basic of the reduction of test cases without any complexity and
through simple algorithms. So, this paper gives the overview of the existing techniques and gives the literature review of test case
reduction techniques in software testing field.

Keywords: Software Testing, Test Case Reduction, Exception Handling, Dynamic Domain Reduction, Independent Path, Basis Path
Testing

1.Introduction

Testing is the name or an activity which is compulsory in the
field of software engineering without which the life cycle of
the software is not been completed. Many authors give their
own definition of software testing but in the simple words,
testing is an activity which validate the behaviour of the
program that whether it is working properly or not.

Software testing provides many challenges to the developers
and tester as well. Testing has a different technique like a
white-box, black-box, multi condition, LCSAJ [3], condition
coverage [3], integration testing, and coverage based testing
[7] and list goes on. Every different testing has its own
unique goals but the overall goal of the testing is to reduce
the cost and time of the software development, since it is
second important stage after the development.

Studies conclude us that software testing takes fifty-percent
or more of cost development [1] [2]. Software Testing is the
field which always attract the attention of the users,
developers, managers as it takes nearly same cost as of
development. To minimize the test cases, hundreds of
techniques will be discovered, but still research continues in
this field. Testing is a constructive part not a destructive one,
as, it is considered as an art of finding errors whose aim to
evaluate the attribute and capabilities of software [1]. Beizer
also states: More than the act of testing, the act of designing
tests is one of the best bug preventers known ([2], pg. 3). We
should always focus on reduction of the test cases but more
important part that we should know where and when to stop
testing.

When and where part of testing is interesting, knowledge
plays vital role. Here knowledge refers to the personal
experience and context. Level of knowledge of everyone is
different which affects the overall testing. In general,
knowledge can be used as information to guide and to
recognize failure in the software [4].

In this paper we are discussing about the old techniques used
in the basis path testing to reduce the test cases. Dynamic
Domain Reduction [5][8], Basis path testing with exception
handling [6], Test Case Reduction [9][10]. This paper gives a

brief introduction and algorithms proposed by the authors. In
last, a comparison has been done and shows how the
following test case reduces.

 All over testing is not easy to handle. So, test case have
taken because, “Test case is a set of conditions or variables
under which a tester will determine whether an application,
software or one of its features is working as it was originally
established for it to do” [16]. On base on test case we decide
whether, requirement fail or pass and all test cases is collect
in the Test Suite. Test case is the basic part or atomic part or
smallest part of the software testing. Every aspect of testing
based on the test cases and selection of test cases. Even small
change in test case lead to large change in test suite and at
last, requirement is affected.

In this paper, we are discussing about the Survey on Test
case Reduction and compare the techniques in paper
[5][6][9]. All papers are about, reduction of the test cases by
using different methods, but, Control Flow Graph in all the
methods. In section 2, we discuss the problem statement. In
section 3, we discuss the algorithm used in different
techniques. Then, in section 4, we evaluate all the techniques
and compare them by different parameters (for instance cost,
time) and then conclude all the techniques,. in section 5, in
respect of their advantages and disadvantages. At last, in
section 6, we discuss about the future aspect of test case
reduction.

2. Test Case Reduction Problem Statement

In general, developers and testers thought, testing is only to
find a defect from the given code. It is true but not
completely, incomplete information tends to increase the
number of test cases instead to reduce it. In this paper, test
case reduction basic techniques can be explained. The
techniques which are discussed in this paper based on three
problems [9][10]

 Reduce number of test cases - The reduction technique
reduces the cost of executing and validating tests.
Therefore, it is of great practical advantage to reduce the
number of test cases.

Paper ID: 020131841 584

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

 Generate the test cases automatically - One of the most
important components in a testing environment is an
automatic test data generation.

 Minimum test case runs– Use less time is spent on test
runs.

These problem statements directly affect the cost and time of
the testing, so, it is better to be dividing the code into the
small parts. The steps are as follows:

2.1 Control Flow Testing

It refers to the order in which each statement is executed or
evaluated [11]. Its aim to check validity of control flow
without executing or testing every path otherwise it is
impractical to check every path [9].

2.2 Independent program paths

It is the path introduces at least new condition for a
statement. In terms of flow graph, it moves along one path at
least before it is defined [9].

2.3 Cyclomatic Complexity

It gives the quantitative measure of the logical complexity
and measure complexity. It gives the number of independent
paths in the basis set and an upper bound for the number of
tests to ensure that each statement is executes at least once
[2].
 Number of regions in flow graph
 Edges-nodes + 2
 Predicate node + 1

3. Test Case Reduction Techniques

The techniques are discussed in this section are fundamental
and effective:

3.1 Dynamic Domain Reduction

It is an automatic test generation method uses constraints
derived from test program controls the execution path in
CFG to reduce domains until test data satisfies constraints
found for test program [5].In this, split algorithm is the main,
it divides the variables. The algorithm is as follows [5]:

1. Compute current search point
2. I is a value from a set or search pt = (½, ¼, ¾…..)
3. Try to equally split leftexpr’s and rightexpr’s domain

IF (ldomain.Bot >= rdomain.Bot AND ldomain.Top <=
rdomain.Top)

 Split = (ldomain.Top – ldomain.Bot)*search pt +
ldomain.Bot

ELSE IF (ldomain.Bot <= rdomain.Bot AND
ldomain.Top >= rdomain.Top)

 Split = (ldomain.Top – ldomain.Bot)*search pt +
rdomain.Bot

ELSE IF (ldomain.Bot >= rdomain.Bot AND
ldomain.Top >= rdomain.Top)

 Split = (ldomain.Top – rdomain.Bot)*search pt +
rdomain.Bot

ELSE
 Split = (rdomain.Top – ldomain.Bot)*search pt +
ldomain.Bot

END IF
RETURN split
END GetSplit

3.2 Test Case Reduction using Common Test Generator

It is the technique used with cyclomatic complexity, works to
find the common test cases at the time of generation and it is
a technique working on parallel execution and it improves
the efficiency of the test cases.

The following steps to generate the test cases [9]:
1. Write the source code
2. Using code, draw the respective flow graph
3. Determine the cyclomatic complexity of the flow graph
4. Prepare test cases from the following flow graph
5. Find all possible constraints from start to end nodes of

CFG
6. Identify the variable with maximum and minimum values

in CFG, if any
7. Finding constants values in CFG, if any
8. Using the above data, draw a Table of all possible test

cases

3.3 Basis Path for Programs with Exception Handling
Constructs

Software testing is mainly divide into black-box and white-
box. But it doesn’t matter with type of testing or technique
used in testing, it is incomplete without exceptions. In every
program code, exception occurs and it takes 10% of total
function [6]. Sometimes program behaves anonymously at
that time exceptions are appeared in the program and protect
program from exceptions and garbage values. The following
steps to generate the test cases for Exception Control Flow
Graph (ECFG) [6]:

1. Write the source code
2. Construct an uncompleted CFG in which there is not

outgoing edge matching to the statement of throw
3. Determine the exception type of the statements that may

thrown
4. Add the outgoing edges of the statement of throw and

necessary exception nodes.

4. Evaluation

Now, we have to evaluate all the algorithms discussed till
now, with the help of the example. We consider it following
parameters for evaluation:

1. Cost
2. Time
3. Path Coverage
The following steps for evaluation of algorithm:

4.1 Source Code
int value (m1, m2, m3)
{ int tot;
 char e1;
 float e2;

Paper ID: 020131841 585

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

 tot = 0;
 if(m1 < m2)
 try{ m3 = m3 + 7;
 If(m1 < m3)
 tot = m1 + 11;
 else
 tot = m1+ 5;
 else
 { m3 = m3 + 11;
 tot = m1 + m2 + m3;
 }
 Catch(char e1)
 { print(“Garbage Value”);
 }
 Catch(float e2)
 { print(“Problem occurred”);
 }
 return(tot);
}

4.2 Control Flow Graph

For above source code, respective control flow graph given
in Fig. 1

Figure 1: Control Flow Graph of Source Code

4.3Comparison of the techniques

Control flow graph is been made from the source code. Now,
with the help of Tables we must understand the detail of
every technique. The Table 1 explains the steps in DDR
algorithm [5]:

Table 1: Dynamic Domain Reduction
S.

NO.
Dynamic Domain Reduction

Steps Result
1 Cyclomatic Complexity Number of Region + 1 = 4
2 Independent Paths Path 1: 1,2,4,6,10

Path 2: 1,2,4,7,8
Path 3: 1,3,5,10
Path 4: 1,3,5,10

3 Initials or Range taken <0 to 30>, <10 to 50>, <0 to 40>
4 Constraints m1 < m2, m1>= m3, m3 = 10
5 Split Values (for m1 <

m2)
8, 10, 11, 13, 15

6 Total test cases calculated651 (after applying split algorithm [5])

This shows that DDR algorithm reduce the overall test cases.
Now, the next Table shows the result of the Test Case
Reduction Technique without exception. The Table 2
explains the step in Common Test Case Generation [10]

Table 2: Common Test Case Generation
S.

No.
Common Test Case Generation

Steps Result
1 Cyclomatic

Complexity
Number of Region + 1 = 4

2 Independent Paths Path 1: 1,2,4,6,10
Path 2: 1,2,4,7,8
Path 3: 1,3,5,10
Path 4: 1,3,5,10

3 Initials or Range taken <0 to 30>, <10 to 50>, <0 to 40>
4 Constraints m1 < m2, m1>= m3, m3 = 10
5 All test Cases <10..30> , <50>, <10>
6 Total test cases

calculated
21 (after calculating the range of the

test cases [10])

Now, as we compare to the DDR algorithm much more test
case is reduced as we are taking common test cases which is
occurred in the control flow graph.
In the next algorithm, Test case reduction with Exception
Handling can be compared. The Table 3 explains the same
[6]:

Table 3: Test Case Generation with Exception Handling
Constructs

S.
No.

Common Test Case Generation
Steps Result

1 Cyclomatic Complexity Number of Region + 1 = 4
2 Independent Path (CFG) Path 1: 1,2,4,6,10

Path 2: 1,2,4,7,8
Path 3: 1,3,5,10
Path 4: 1,3,5,10

3 Independent Paths
(ECFG)

Path 1: 1,2,4,6,10
Path 2: 1,2,4,7,8
Path 3: 1,3,5,8,10
Path 4: 1,3,5,9,10

Result of all the algorithms is been discussed in the Tables I,
II, III. All the algorithms have its own significant values,
advantages and disadvantages. Overview of the entire
algorithm i.e. its features, overall results, saving time effort,
cost effort is discussed in the Table 4. These algorithms
worked on the basic methodology i.e. Basis Path Testing. It
is the most general and first method worked on the low level
of the code, conditions, exceptions, loops etc. An automation
tool has been introduced for the execution of the algorithms.
But, manual testing is always prefers first by the companies
due the personal experience of the testers. Basis path testing

Paper ID: 020131841 586

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

is one technique implemented in the company that is done
through automated as well as manual. In testing there are
limited amount of resources and the biggest challenge is to
choose the correct path which is useful in analysis. All the
challenge is resolved by these algorithms.
An overall result has been discussed in Table 4:

Table 4: Overall Results
Parameters Results

Common
Test Case
Generator

Dynamic
Domain

Reduction

Test Case Generation
with Exception

Handling Constructs
All possible test

Cases(From
traditional
algorithm)

52111 52111 52115

Reduced Test Cases 651 21 25
Saving (in percent) 99.95 98.75 99.95

Time of
Compilation

5.25 162.75 6.25

Saving (%) = 100 – ((100 * Reduced Test Case)/ All
Possible Test Case)

Time of Compilation = Assumption of time taken by each
test case * Reduced Test Cases

There are some of the results shown in Table IV. From these
results we get a clear idea that traditional testing creates
many test cases which is not useful to us. To reduce all un
useful test cases we apply algorithms to reduce the
complexity of time and space.

4.4 Graph Analysis

The data in the table4 above shows the result numerically but
numbers are not sufficient for us. Result should be both
numerically as well as graphically. Generally, graph shows
us the axis on which various analysesare been shown and
easy to understand, even for the naïve user. Result
graphically shown in Fig. 2

Figure 2: A bar graph shows relationship of algorithms with test case reduction

It shows the graph between the algorithms and test case
reduction. The longest bar is of DDR algorithm and the
shortest bar is of Common Test Generator algorithm. It
shows that how nicely graph is been plot for the test case
reduction. In this x-axis shows the various algorithms and y-
axis shows the test case reduction. Plotting is been done on
the basis of calculation done in Table IV (overall results).

5. Conclusion

So far different algorithms are discussed. Every algorithm
has its own importance. Dynamic Domain Reduction works
on the particular domain and its split points. Better the split
point better the result came. It has some disadvantages, for
instance, it is more expensive technique due to its dynamic
nature but provides more information [5]. This technique
only execute some paths and not every path but done
symbolically. It handles loops and arrays simply. Takes large
space and time to execute and applied only to numeric data
software. It creates problem during aliasing, this is not
resolved completely. The worst case in running time
complexity of Dynamic Domain Reduction isɵ(P * KD),
where K is split attempt at any decision, p is number of paths
and k is constant [5]. Each time the value assigned, input
space reduced to one dimension. Main problem of DDR is

they cannot handle array completely, as, it considers array as
a one variable.

There are many problems in the Dynamic Domain Reduction
technique which is resolved by the technique called common
test case generator. It seems to be, it takes the test cases
common in the software program, it reduces the test cases
much more efficiently and covers the less space and takes
less time. This technique equally worked on the parallel
execution of the software program instead of serial
execution, which saves the resources of the hardware and
software efficiently. Only limitation with this technique, it
worked only with common variables and where more than
two variables are there. It also worked with the fix values
either it be constant or variables. But it reduces the time of
compilation significantly. Serial execution takes more time
to execute each test path and consumes more space for store
the result. This technique work parallel execution, more
advantageous for everyone.

In general, large program has an exception in it. The
exceptions seems not affect program seriously but affect
some or the other way. If there, exception exist in the
program, program twice analyzed but with the algorithm of
exception handling constructs, program is analyzed in one
go. Exception leads some operation not worked properly and

Paper ID: 020131841 587

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

program terminates unambiguously. Normally, difference
between normal testing and exception testing is that program
test twice but it takes more cost and time in execution. This
makes algorithm simple and make test only once by
construction exception control flow graph. It reduces the
robustness of software by increasing cost of the program.

6. Future Work

We discussed, about the algorithms and its features,
advantages, disadvantages, cost, time, test cases compare
with traditional algorithm to all of these algorithms. Great
work is done in the traditional algorithms, and in the three
algorithms great work is been done. Time, cost and test cases
are reduced significantly. Now, in the future perspective
many type of testing are there, for instance, regression
testing, acceptance testing, GUI testing and many more
testing are there. Now, our scenario is changing and so the
software development industry also changes. Basis path
testing is the basic methodology for reducing test case but in
current scenario, GUI based interface is been there and based
on many languages which is being programmed on different
platforms. Now, Web is been totally different from
Standalone application and each has different types of testing
performed. New type of testing come into scenario, for
instance, unit testing, integration testing, alpha testing, beta
testing, gorilla testing and many more techniques.

Instead, all these techniques continuous researches in this
field are going on like testing is done with the fusion of
mining and knowledge Engineering. For instance, Clustering
Approach to Improving Test Case Prioritization [13] and
using knowledge engineering test case is improving System
Test Case Prioritization of New and Regression Test Cases.
Testing is not all about the reduction of test cases but
minimization, prioritization, selection, adequacy and also
enhancement comes under the testing equally. These are
some advanced techniques on which continuous work is
going on.

Test case quality, equally affect the factor in software
testing, Multi- Dimensional Measures for Test Case Quality
and Research on New Techniques and Development Trend
of Software Testing [14]. Testing now all done
automatically, manual is the talk of past due to automated
tools is been come [15].

Development in this field is very vast and it never ends, as,
software industry grows simultaneously testing industry also
increases. It is also possible that for instance, in history
hardware and software industry splits and works
independently, same testing and development industry also
splits and works independently.

Now the tool has come for testing online also, no need to
install tools in your desktop. These changes fulfil the needs
of the naïve user, managers. This reduces the cost of the
company and maximum features available within the small
space. These tools are also compatible with the browsers, for
standalone applications tools also available.

At last we conclude that there is a vast scope of testing in the
future, as, testing industry grows very fast and steadily. In
coming years both development and testing preferred or

treated equally. Now days, advance techniques of software
testing can leading the market and more than hundred type of
testing are there in the market. Our techniques, is very basic
one but, it has been emphasize on the coding part and not the
interface or environment. These techniques can be a part of
the advance level techniques by making them hybrid with
other techniques. For instance, use Branch coverage with
Regression testing. These, existing techniques can be hybrid
with other techniques also. It is a future aspect.

References

[1] Antonia Bertolino, “Software Testing Research:
Achievements, Challenges, Dreams,” IEEE, 2007,
Future of Software Engineering, Minneapolis.

[2] Boris Beizer, “Software Testing Techniques,”
Dreamtech Press, 2003, 81-772-2260-0, 2nd ed.

[3] Aditya P. Mathur, “Foundation of Software Testing,”
Pearson Education India, 2008, 81-317-0795-4, 4thed.

[4] Juha Itkonen, Nika V. Mantyla and Casper Lassenius,
“The Role of the Tester’s Knowledge in Exploratory
Software Testing,” IEEE Computer Society, vol. 39, no.
5, 2013, pp 707-724.

[5] Jefferson Offutt, Zhenyi Jin and Jie Pan, “The Dynamic
Domain Reduction Procedure for Test Data Generation,”
Software Practice and Experience, vol 29, no 2, 1999,
pp. 167-193.

[6] Quingtan Wang, Shujuan Jiang and Yanmein Zhang, “,”
In IACSIT Press, 2012, International Conference on
Computer Science and Information Technology
(ICCSIT), Singapore.

[7] Muhammad Shahid, Suhaimi Ibrahim and Mohd Naz’ri
Mahrin, “A Study on Test Coverage in Software
Testing,” In IACSIT, 2011, International Conference on
Telecommunication Technology and Applications
(CSIT), Singapore.

[8] Jefferson Offutt, Zhenyi Jin and Jie Pan, “The Dynamic
Domain Reduction Procedure for Test Data Generation:
Design and Algorithms*,” ISSE Tech. Rep. ISSE-TR-
94-110, George Mason University, Washington D.C.,
USA, 1994.

[9] Dr. R.P. Mahapatra, M. Mohan and A. Kulothungan,
“Effective Tool for Test Case Execution Time
Reduction,” In IACSIT, 2011, International Symposium
on Computing, Communication and Control (CSIT),
Singapore.

[10] R.P. Mahapatra and Jitendra Singh, “Improving the
Effectiveness of Software Testing through Test Case
Reduction,” In World Academy of Science, Engineering
and Technology, 2008.

[11] en.wikipedia.org/wiki/Control_flow, (Last Accessed
Date: May. 12, 2014).

[12] Ryan Carlson, Hyunsook Do and Anne Denton, “A
Clustering Approach to Improving Test Case
Prioritzation: An Industrial Case Study,” 2011, Software
Maintenance(ICSM), 2011, IEEE International
Conference, Williamsburg

[13] Hema Srikanth, Laurie Williams and Jason Osborne,
“System Test Case Prioritization of New and Regression
Test Cases,” report NC 27695, North Carolina State
University, Raleigh.

[14] Zhang Hongchun, “Research on New Techniques and
Development Trend of Software Testing,” Atlantis

Paper ID: 020131841 588

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 5, May 2014
www.ijsr.net

Press, 2013, International Conference on Computer
Science and Electronics Engineering (ICCSEE), Paris.

[15] Zhi Quan Zhou, ShuJia Zhang, Markus Hagenbuchner,
T.H. Tse, Fei-Ching Kuo and T.Y. Chen, “Automated
functional testing of online search services,” report TR-
2010-06, University of Wollongong, University of Hong
kong, Swinburne University of Technology, HKU,
2010.

[16] en.wikipedia.org/wiki/Test_Case, (Last Accessed Date:
May. 8, 2014).

Author Profile

Vaibhav Chaurasia pursuing M.Tech. in Software
Engineering from Galgotias University. He is
completed B.Tech. in Computer Science from NIMS
University in 2012 and pursuing M.Tech. in Software
Engineering from Galgotias University currently in

2014 respectively. Area of interest is Software Testing.

Yogita Chauhan is pursuing M.Tech. in Software
Engineering from Galgotias University Greater Noida,
Delhi-NCR. She is completed B.Tech. in Information
Technology from Gold Field Institute of Technology
& Management, Faridabad affiliated from Maharshi

Dayanand University, Rohtak.Area of interest are Software Testing,
Data Mining.

Thirunavukkarasu K., is an Assistant Professor at
Galgotias University, Greater Noida, Delhi-NCR. He
is pursuing PhD in CSE in the research area of Spatial
Database. He has been a student of Madras University,
Bharathiar University, and Anna University, Chennai,

India. He has more than 14 years of experience in Teaching and 3
years in software industry. He has taught for APIIT, (affiliated to
Staffordshire University, UK) at Panipat, Vijaya College, Surana
College and KKECS College, Bangalore University, Bangalore and
worked as Software Engineer for I2 Technology, UK at Bangalore.
He has involved in various academic activities like BoE member
and Assistant Custodian for PG-Unit, Bangalore University,
Bangalore. He has wide research interests that include Knowledge
Engineering, Data Mining, and Databases Technology. He is a
Member of IEEE, CSI and Life Member of ISTE. He has 9
certificates from IMS, IBM and trained 150 students on IBM DB2
certificates. He was the organizing Secretary for an International
Conference ICACCT 2010. He has conducted various workshops,
short term and summer courses. He has published 9 papers in
international and 3 papers in national level.

Paper ID: 020131841 589

