
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

Automated Test Case Generation Using Multiple
Modelling Techniques

Melvin Philips1, Nikhil Pawar2, Nitesh Joshi3, Sanket Khandebharad4, Sunil Deshmukh5, Kailash Tambe6

1, 2, 3, 4, 6 Computer Department, MIT College of Engineering, Pune, India

5 Test Lead/Architect, ZenTest Software Pvt. Ltd., Pune, India

Abstract: Model based testing is no more in nascent phases. Many research based and commercial tools are already available today.
Most of the existing systems use specific models like UML or FSM to model the system. A single methodology will not be effective
enough to ensure optimum test coverage. The intension of this project is to apply multiple modelling techniques to generate test cases. A
single system applying various models for test case generation will fulfil the key requirement of ensuring test coverage. We plan to make
use of various test case design techniques as well to generate test cases from the model and then optimize or prioritize the test cases, if
needed. We would mainly be concentrating on the analysis level UML diagrams like Activity diagrams, State transition diagrams.

Keywords: Model Based Testing, Unified Modelling Language, Decision Table, Statechart Table.

1. Introduction

Software testing is an important activity in software
development life cycle. Prolific amount of testing styles have
come into use in the industry these days. Testing is the
execution of a program on a set of test cases and the
comparison of its actual results with the expected results.
Test cases are usually derived from software artefacts such as
specifications, design, implementation or the model of the
system. Our goal is to build an automatic test case generator
tool. However, before getting into core approach let us get a
brief overview of the important elements essential to the
discussion.

A model is a behavioural representation of a system under
test. Model-based testing (MBT) has recently gained
attention with the popularization of models in software
design and development. The fundamental tasks of MBT
includes gathering the necessary information to build a
model, the steps in building a model, and generating and
evaluating tests from a model [1].

The UML and its diagrams are substantially used to visually
depict the structure and the dynamic behaviour of various
applications. Every software organization when eliciting on
the problem develop either the activity diagram or statechart
diagrams (as per UML 2.0 convention) or sometimes both.

Activity diagrams help to visualize, construct, specify, and
document the dynamics of a class of objects, or they may be
used to model the flow of control of an operation [2]. In a
commercial environment, activity diagrams are noticeably
used to ideate a business process. Swim-lane Diagrams, a
specialized form of Activity diagrams show a complete
representation of actions performed by specific actors. A
state chart diagram shows a state machine, which focuses on
the flow of control from one state to another [2]. A state
machine is a behaviour that specifies the sequences of states;
an object goes through during its lifetime in response to
events, together with its responses to those events.

Decision Table is a precise yet compact method for
describing complex functional requirements and designing
their respective test cases. This tabular form comprising of
actions and conditions provide results in an easy to read
format for all input combinations. They clearly depict what
scenarios in a system are working or non-working. Decision
tables are best in transactional testing situations; hence help
us design the systems test cases.

We suggest an approach to obtain the tests wherein
depending on the type of the model/diagram we first convert
them to an intermediate form. This intermediate form may be
a decision table or a statechart table. Both these tables aid us
in various aspects of software testing right from test case
generation part to the management of a huge set of test cases.
Decision table is a powerful black-box testing technique [5].
We then apply optimization or reduction techniques if
applicable as in case of decision tables [7] or statechart tables
[3]. So the system intends to generate test cases based on
various models of the application under test, and generate
test cases by applying design techniques and then optimize or
prioritize the test cases, if needed.

2. Approach and Architecture

In conformance with the concept of Model Based Testing we
present ideas in which the user can generate test cases using
either of the two ways:

In the first approach we import a rich and complete UML
diagram which will be parsed to extract essential meta-
information and shape information to populate a statechart
table which will consist of details of the respective diagram.
This will further aid us to formulate the test cases using the
approach discussed under the heading Test Case Generator
[3].

In the second approach we convert a model diagram by
extracting the information using parsing and populating this
data in a decision table. Test cases are obtained using all
combinations and further optimized using orthogonal array
technique (OAT).

Paper ID: 020131248 722

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

U
S
E
R

I
N
T
E
R
F
A
C
E

PARSER UNIT DATABASE

TEST CASE GENERATOR

TEST CASE EXPORTER

STATECHART TABLE
CREATOR

DECISION TABLE
CREATOR

 I
M
P
O
R
T

UML DIAGRAMS

STATECHART DIAGRAM

ACTIVITY DIAGRAM

Figure 1: System Design

The modules sketched in the above architecture are
delineated as follows:

2.1 Import

In this module we import a model diagram of the application
under test. Again we will be focusing only on the activity and
statechart diagram created as per the UML 2.0 standards. We
assume the diagram to be complete and rich but there is a
huge chance for the user to import a UML diagram which
may not be in conformity with UML 2.0 standards. In the
paper [4] V. Mary Sumalatha and Dr. G. S. V. P. Raju
discussed an easy way to remove ambiguities from activity
diagrams. This can be applied to make the diagram free from
flaws.

2.2 Parser

The diagram imported will be parsed to extract meta-
information. In case of an activity diagram we retrieve the
swim-lane actors, swim-lane specific actions, decision node,
fork node, join node, connectors, dependencies and also its
relationship with the previous and next shape. Conversion of
any diagram to test cases involves parsing as its initial step.
Conversion of statechart diagram to statechart table is simple.
With respect to our first approach, we deduced that
converting any diagram to a statechart diagram would benefit
us rather than forming a separate process for each type of
diagrams. Here, the activity diagram shall be converted into a
state machine diagram using the following algorithm:

1. Let S0 and S' be the start and exit state of the activity

diagram.
2. Let V be the set of all the actions of the activity diagram.
3. Generate new state by applying action from set V to State

s0 and store it in set V'.
4. Generate new state by applying next action from set V on

last state of set V'.
5. Store the newly obtained connection in a data structure.
6. a) If the obtained shape is a decision box with n outgoing

flows then n states are generated and stored in set V'.
b) If the obtained shape is fork with m outgoing flows then

all the m actions are applied on the previous state and
new m states are generated.

c) If the obtained shape is join with m incoming flow then
all the m previous states are applied with one action to
get one state.

7. Jump to step 3 until exit state is reached and all the actions
are covered from set V.

Now with respect to the state chart diagram we extract
information such as the states, composite states, submachine
states, choice nodes, connectors, dependencies and also its
relationship with the previous and next shape.

2.3 Intermediate Form

Defining an intermediate form will ease our efforts by
providing a common point to handle data parsed from the
different diagrams. Furthermore depending on the approach
used we convert the information obtained from the parser to a
statechart table or a decision table.

Statechart Table
A statechart table is an alternative way of expressing
sequential modal logic. Instead of drawing states and
transitions graphically in a statechart diagram, the modal
logic is expressed in a tabular format. We will be converting
statechart diagram into statechart table because it is a terse,
crisp format for a statechart diagram. They also reduce the
maintenance of graphical objects. Unlike statechart diagrams,
addition and deletion of states into a statechart table will omit
the over-head of rearranging states, transitions and junctions.

Statechart Diagram to Statechart Table

This detailed representation not only helps us discover
possible transitions of states but also provides us with the
adequate information needed to form test cases out of it. The
steps included are as follows:

1. Let V be a set of all the states
2. Create a table, where the rows and column are labelled as

the states of the system taken in set V. The cell entries are
the triggers/actions that cause a transition from a state to
another.

3. After implementing the algorithm to generate statechart
diagram from activity diagram, information is extracted
from the diagram to search for an action between the
selected states.

4. If action is found then add the action in the table with the
first state as the x-axis and the other as the y-axis

Continue step 4 till end state is reached.

Decision table

As discussed earlier Decision Tables aids ideally to handle
transactional situations that represent a table connecting
conditions with actions. This tabular representation populates
all the conditions in a design model and also checks the
actions extracted hence, leading to thorough Test Derivation.
Every column in a decision table depicts a test case which
brings to notice the Coverage Criteria as at least one test case
per combination of conditions is achieved through it. Also
adding to its attributes is the Bug Hypothesis which simply is
the discovery of improper actions or missing actions that
might exist in the model provided [9].

Paper ID: 020131248 723

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

Activity Diagram to Decision Table
After the activity diagram is parsed and relevant shape
information is extracted our system will segregate actions
based on actors in two classes, user actions and system
generated actions. User actions in the swim-lane diagrams
very well depict the input conditions to be included in the
decision table. Decision nodes also depict conditions on
which the application under test will depend. In our approach
user actions and decision nodes will act like conditions to the
decision table.

The system generated actions depict output actions to be
carried out in the decision table. Condition alternatives or
otherwise called combinations are generated using cartesian
product.This is also called as exhaustive testing.These
condition alternatives will be in true/false form. To obtain the
value of the expected output we trace the UML Diagram
treating it as a tree with the starting node acting as the root.
Starting with the start node we traverse the tree to find the
output action whose expected outcome is to be calculated
.Based on the combination column values we decide the
direction of the traversal. Whenever there is an action and a
true value is received from the combination for the respective
action we move ahead. If a false value is obtained we stop
and return a false value to the expected result column.
Whenever there is a decision node in the path to the output
action the decision of which child to move to depends on the
combination value for that decision. Whenever there is a fork
node in the path to the output action all the child’s of the fork
node are traversed one by one to look for the output
condition.

Thus after traversing the entire tree based on the above
mentioned rules if the output action whose expected outcome
we are calculating, is not on the path to the end node we
return a false value. On the other hand if find the node on the
path to the output action we stop our traversal and return a
true value. Thus the rows for expected outcome are
calculated and added to the decision table.

2.4 Test Case Generator

Statechart

The statechart table already contains all the information
necessary to create a test case. Consider the following e.g.

Figure 2: Connection Status

While creating test cases from statechart diagrams care
should be taken that all the transitions are exercised at least
once. This method of testing ensures optimum coverage
without generating large number tests. The statechart table
for the diagram is given as below:

Figure 3: Statechart Table

Decision Table

To ease our effort in understanding the procedure of
generating test cases through decision table we take up an
example of an activity diagram for a file exchanging system.

Figure 4: Activity Diagram for a file transfer system

Converting the above system, we obtain the following
decision table:

Figure 5: Decision Table

Paper ID: 020131248 724

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

A decision table is capable of providing us test cases as the
columns generated in it may act like one. But these test cases
may be found as repetitive (i.e. TCs giving same O/P).

To avoid this we may optimize these test cases by collapsing
the decision table. If the value of one or more particular
conditions can’t affect the actions for two or more
combinations of conditions, we can collapse the decision
table. This can be achieved by keeping the following three
steps in mind:

• Combinable columns often but not always next to each

other
• Look for two or more columns that result in the same

combination of actions (for all the actions in the table)
• Replace the conditions that are different in those columns

with “X” (for don’t care/doesn’t matter/can’t happen)

Applying the above with example taken we get [7]

Figure 6: Collapsing Decision Table

The idea is to repeat this process until no further columns
share the same combination of actions It is also important to
keep in mind that collapse should not erase an important
distinction. In such cases the collapse of two columns is
avoided. As a result of which the following collapsed
decision table is obtained.

Figure 7: Optimized Decision Table

Another aspect to be wary of is a tables that have non-
exclusive rules.

2.5 Database

The database operates at two stages in our system. Firstly it is
used to store all the meta-data and shape information that will
be extracted from the UML diagrams. Secondly the
generated test cases will be stored in the database. This will
help us to easily export test cases in user customized formats.
This information may be useful when our system is to be
operated in semi-automatic mode i.e. if the user wants to
change some information in the designed model.

3. Acknowledgement

We express our profound gratitude and deep regards to our
guides Prof. Kailash Tambe (Assistant Professor, MIT
College of Engineering Pune) and Mr. Sunil Deshmukh
(Zentest Software Pvt. Ltd., Pune) for their exemplary
guidance, constant supervision and encouragement
throughout the course of this thesis. This work was
supported by Zentest Software Pvt. Ltd., Pune.

4. Conclusion and Future Scope

We have defined a methodology to automatically generate
test cases from UML Activity Diagrams and UML State chart
Diagrams. We have first parsed these diagrams and
converted the parsed information to either decision table or
statechart table. We then derive test cases from these
intermediate forms. We have discussed two approaches of
generating test cases from UML Activity Diagrams. In the
future we plan to generate test cases from other UML
Diagrams. This will not only help us enhance the quality of
testing but also help the tester in deriving test cases which
ensures optimum test coverage of the application under test.
Now our system takes as input a file containing the design
diagram. Presently many applications are used to create
UML diagrams for e.g. Rational Rose from IBM, Microsoft’s
MS Visio, and thus varying file formats. We plan to design a
system that will incorporate these different file formats.

We also plan to generate test cases using other black box
testing methods. Thus by including boundary value analysis
and equivalence class partitioning to our approach we can
enrich the automatically generated test cases. Moreover, after
obtaining a plethora of test cases we wish to further optimize
and prioritize them to obtain an efficient list of test cases. For
test case optimization orthogonal array technique can be
implemented[8]. OAT is a systematic and statistical way of
software testing. Hence OAT will reduce the number of test
cases but will retain its coverage. We can also carry out test
case prioritization on these improved set of test cases.
Clustering approach for test case prioritization is discussed in
[6].

References

[1] Model-based Software Testing Ibrahim K. El-Far and

James A. Whittaker, Florida Institute of Technology.
UML-based Test Generation and Execution.

[2] The Unified Modeling Language User Guide, 2nd Edition
Grady Booch, James Rumbaugh, Ivar Jacobson.

Paper ID: 020131248 725

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 3, March 2014
www.ijsr.net

[3] http://www.softwaretestinghelp.com/state-transition-
testing-technique-for-testing-complex-applications/

[4] V. Mary Sumalatha and Dr. G. S. V. P. Raju, Model
Based Test Case Generation from UML Activity
Diagrams.

[5] M. Young, The Technical Writer's Handbook. Mill
Valley, CA: University Science, 1989.

[6] Ryan Carlson, Hyunsook Do, Anne Denton. A clustering
approach to improve test case prioritization.

[7] Rex Black, Advanced software test design techniques,
decision tables and cause effect graph

[8] Shubra Banerjee, Orthogonal Array Approach for Test
Case Optimization

[9] Rex Black, Applying Decision Tables to Business logic.

Author Profile

Melvin Philips is currently pursuing B.E. from
Computer Department in Maharashtra Institute of
Technology College of Engineering, Pune (MIT-COE)
(2010-2014 Batch).

Nikhil Pawar, is currently pursuing B.E. from
Computer Department in Maharashtra Institute of
Technology College of Engineering, Pune (MIT-COE)
(2010-2014 Batch).

Nitesh Joshi is currently pursuing B.E. from Computer
Department in Maharashtra Institute of Technology
College of Engineering, Pune (MIT-COE) (2010-2014
Batch).

Sanket Khandebharad is currently pursuing B.E.
from Computer Department in Maharashtra Institute of
Technology College of Engineering, Pune (MIT-COE)
(2010-2014 Batch).

Sunil Deshmukh has received training of QAI’s CSQA
certification. He is currently the Test Lead/Architect at
ZenTest Software Pvt. Ltd., Pune, India

Kailash Tambe, has done his M.E. in Information
Technology. He is currently an Associate Professor
with MIT College of Engineering, Pune.

Paper ID: 020131248 726

	Introduction
	Approach and Architecture
	Import
	Parser
	Intermediate Form
	Test Case Generator
	Statechart

	Database

	Acknowledgement
	Conclusion and Future Scope

