Minimizing Packet Loss Using Congestion Control Scheme for Video Streaming

A. ThamaraiSelvan¹, R. Sethu Raman²

¹PG Student, Department of CSE, Sathyabama University, Sathyabama University, Chennai, India

² Assistant Professor, Department of CSE, Sathyabama University, Sathyabama University, Chennai, India

Abstract: In the Multimedia streaming the transferring of data is continuous streaming. Before the actual transmission the frames were divided into packets. For the creation of efficient communication the receiver side must receive all the packets. For the video streaming if there is any packet is dropped it is useless.in order to overcome this problem, we use Selective frame discard analyze their performance by means of competitive analysis. The QoS of a video stream is measured in terms of a cost function, which takes into account the discarded frames. But in this method due to congestion or heterogeneous nature of the network, data loss may be occurring. So, in order to overcome this problem, introducing an innovative technique called buffer management algorithms in specific environments. In such environments, the algorithm used to decide which packet to drop in case of buffer overflows, to avoid good put degradation. This paper presents a model which captures such interpacket dependencies, and builds algorithms for performing discarding the packet. Traffic consists of an aggregation of multiple streams, each of which consists of a sequence of interdependent packets. So, by using this buffer management algorithm we effectively reduce the packet loss and maximize the Quality-of-Service.

Keywords: buffer management; inter packet dependencies

1. Introduction

Wireless network refers to any type of computer network that utilizes some form of wireless network connection. It is a method by which homes, telecommunications networks and enterprise installations avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Wireless telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level of the OSI model network structure.

The emergence of high-speed networks facilitates many multimedia applications that rely on the efficient transfer of compressed video. Such applications include streaming video broadcasts, distance learning, shopping services, etc. However, compressed video, especially variable-bit-rate (VBR) [4][8] video, typically exhibits significant burstiness on multiple time scales, owing to the encoding schemes and the content variation between and within video scenes. This burstiness complicates the design of efficient transport mechanisms for such media. In a network where resources such as bandwidth and buffering capacity are constrained there is a need for an efficient video delivery system that can achieve high resource utilization and maximize the QoS perceived by the user.

A simple strategy called Frame-Induced Packet Discarding, in which upon detection of loss of a threshold number of packets belonging to a video frame, the network attempts to discard all the remaining packets of that frame. In the problem of optimizing the quality of the transmitted video for a given cost function has been considered with leaky bucket constraints. Our work differs from theirs in that we are trying to optimize the QoS perceived by the user, rather than minimizing loss in general. In offline algorithms for optimal selective frame discard have been considered. The notion of selective frame discarded at the server has been introduced and the optimal selective frame discard problem using a QoS-based [5] [7] cost function has been defined.

The major problem for packet loss in the networks is buffer overflows due to congestion. In case where the traffic has interpacket dependencies, dropping packets due to overflow may result in very poor performance. For streaming data with packet dependencies, it must differentiate between the throughput and goodput [10]. Throughput is the amount of data delivered in terms of packets, and the goodput, is the amount of data decoded effectively at the receiving end. These two measures were different, e.g., the throughput can be high, while its goodput can be low. As an example of this scenario considers the case where a single packet is dropped from every frame, that will be result in zero goodput, even the overall packet-level throughput will be high. The steps to decide which packet to drop in case of overflow is important to system performance, while considering that such a decision mightaffect other packets which have already been forwarded, orpackets that have not yet arrived. The aim of this paper is to maximize the goodput.

This paper proposes and develops buffer management algorithms in specific environments, namely, those employing a FIFO scheduling buffer. We use FIFO scheduling buffer because: 1) it is simple, 2) Incoming traffic arrival order maintained, so that packet reordering is maintained, and

1.1 Video compression

The video compression a video frame that can be compressed using different algorithms with different advantages and disadvantages, video frames algorithm are called **picture types** or **frame types**. The three main frame types are **I**, **P** and **B**.

• I-frames are the least compressible but it does not require any other video frames to decode. It is the main frame

- **P**-frames use data from previous frames to decompress and largely compressible than I-frames.
- **B**-frames can use both before and after frames for the reference of data to get the largest amount of data compression.
- Here are three types of *pictures* (or frames) used in video compression: I-frames, P-frames and B-frames. The Fig 1.1 shows how the frames are arranged in an order.
- An **I-frame** is an 'Intra-coded frame', in effect a fully specified picture; it is a static image file. P-frames and B-frames hold only some of the image information, so they need less space to store than an I-frame and thus improve video compression rate.
- A **P-frame** is a 'Predicted frame' contains only the changes in the image from the before frame. For example, in a scene where a car moves across a stationary background, only the car's movements need to be encoded. The encoder need not to store the unchanging background pixels in the P-frame, thus saving space. P-frames are also known as *delta-frames*.
- A **B-frame** is a 'Bi-predictive frame' saves even high space by using differences between the present frame and both the preceding and following frames to specify its content.

Figure 1.1: Bidirectional prediction

1.2 Related work

Incase if the buffer overflows the packet were not discarded, the Frame were discarded, they follow the various scheme to discard the frame, In **the selective frame discard** [1][2][3] policy the server pre-emptively discards the frame by taking the network bandwidth and client QOS into an account. Here the end to end delay is reduced but complexity of optimal algorithm is high.

In paper propose a buffer management policy that takes packet dependencies into consideration, an entire frame is dropped too several packets of the frames are dropped. As a rule for dropping packets, they suggest a **latest-frame-first rule**. This rule states that the frame to be dropped thatthe smallest amountrange of packets is delivered [9].

2. Introduction about Wireless Network

Wireless network refers to any type of computer network that utilizes some form of wireless network connection. It is a method by which homes, telecommunications networks and enterprise installations avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Wireless telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level of the OSI model network structure.

2.1 Types of wireless networks

Wireless PAN

Wireless personal area networks (WPANs) interconnect devices within a relatively small area that is generally within a person's reach. For example, both Bluetooth radio and invisible infrared light provides a WPAN for interconnecting a headset to a laptop. ZigBee also supports WPAN applications. Wi-Fi PANs are becoming commonplace as equipment designers start to integrate Wi-Fi into a variety of consumer electronic devices. Intel "My WiFi" and Windows 7 "virtual Wi-Fi" capabilities have made Wi-Fi PANs simpler and easier to set up and configure.

Wireless LAN

A wireless local area network (WLAN) links two or more devices over a short distance using a wireless distribution method, usually providing a connection through an access point for Internet access. The use of spread-spectrum or OFDM technologies may allow users to move around within a local coverage area, and still remain connected to the network. Products using the IEEE 802.11 WLAN standards are marketed under the Wi-Fi brand name. Fixed wireless technology implements point-to-point links between computers or networks at two distant locations, often using dedicated microwave or modulated laser light beams over line of sight paths. It is often used in cities to connect networks in two or more buildings without installing a wired link.

2.2 Wireless mesh network

Wireless MAN

Wireless metropolitan area networks are a type of wireless network that connects several wireless LANs.

• WiMAX is a type of Wireless MAN and is described by the IEEE 802.16 standard.

Wireless WAN

Wireless wide area networks are wireless networks that typically cover large areas, such as between neighboring towns and cities, or city and suburb. These networks can be used to connect branch offices of business or as a public internet access system. The wireless connections between access points are usually point to point microwave links using parabolic dishes on the 2.4 GHz band, rather than omnidirectional antennas used with smaller networks. A typical system contains base station gateways, access points and wireless bridging relays. Other configurations are mesh

Volume 3 Issue 3, March 2014 www.ijsr.net systems where each access point acts as a relay also. When combined with renewable energy systems such as photovoltaic solar panels or wind systems they can be stand alone systems.

Cellular network

A cellular network or mobile network is a radio network distributed over land areas called cells, each served by at least one fixed-location transceiver, known as a cell site or base station. In a cellular network, each cell characteristically uses a different set of radio frequencies from all their immediate neighboring cells to avoid any interference.

3. Overview

Wireless network is a type of computer network where communication or exchange data among various devices on the network are carried out without the use of cables, This means, the connection and exchange of data between computers and other devices in a particular network is made possible by radio signal frequency (RF) or electromagnetic waves in the atmosphere instead of cables.

Clients are connected to a wireless network through a wireless access point (AP) instead of an Ethernet switch. Each client uses a wireless adapter to gain access to the network through a wireless device such as a wireless router or access point. The wireless adapter in the client communicates with the wireless router or access point using RF signals. Once connected to the network, wireless clients can access network resources just as if they were wired to the network.

4. Significance of Wireless network

Wireless networks provide an inexpensive and easy way to share a single Internet connection among several computers. This means you only need one modem, and you can add additional computers to the network just by plugging in a wireless card and turning them on. The new machines are connected to the Internet immediately.

A wireless network also lets you access files and printers from anywhere in your home. It allows you to synchronize files you have on your laptop with your home computer, and you can easily send files between computers as well. Using a wireless network to transfer files is faster than sending them via e-mail or burning them to a CD. Because printers connected to one of the computers on a network are shared by all the computers on that network, you can write documents anywhere in your home, press the 'print' button, and collect the printed files from a printer that is connected to another computer.

5. Proposed Work

To overcome the issue of packet losses in the multimedia streaming applications we providing two guidelines for developing the buffer management algorithm. Actually in the wireless network, before transmission takes place across the network the data frames are split into n number of smaller sized packets. In the video streaming applications the packets are dependent and belong to each other. The receiving side can make use of the data only if it receives all packets of a frame. The problem of ensuring that all packets of a frame arrive at the destination is critical one. When considering real-time traffic, such as streaming multimedia traffic, where retransmission of missing packets is not possible due to delay constraints by the application and also to increase the cost.

We suggest and extend the buffer management algorithms. Our focus on FIFO scheduling is:

It is too simple; it maintains the receiving order of incoming traffic, hence avoiding the need for mechanisms that deal with packet reordering

Contribution

The main contributions are as follows:

We provide two design guidelines for algorithms, namely,

- No-regret: Once a frame has a packet came into the buffer that should make everyattempt to deliver the complete frame.
- Ensure-progress: Deliver a complete frame as soon as possible.

Proposing a buffer management algorithm, WEIGHTPRIORITY that follows these guidelines.

We analyze the performance of our algorithm, and show that for any arrival traffic the ratio between its performance and that of an optimal algorithm is always bounded.

5.1 System Model

Consider a collection of N streams in traffic model of smallsized packets, designated by T_1, \dots, T_n . Each stream T_n is observed as a sequence of frames, \mathbf{r}_i^n , each consisting of a sequence of exactly k packets, $\mathbf{s}_1^{n,1}, \dots, \mathbf{s}_k^{n,l}$. A packet $\mathbf{s}_j^{n,1}$ is referred to as the j-packet of framer \mathbf{r}_i^n , and its arrival time is denoted by $\mathbf{b}(\mathbf{s}_j^{n,l})$. When referring to packets, we will sometimes omit the frame index i, and use the notation $\{\mathbf{s}_j^n\}_{j=0,1,\dots}$ when referring to the sequence of packets corresponding to stream Sx_m , where \mathbf{s}_j^m denotes the jth packet of stream Sx_m , and the (jmadk) packet of frame $k \bigvee_{j=1}^{m}$ (i.e., the $\frac{j}{k}$ wth frame of stream Sx_m). The packets of a stream arrive in order, i.e., $\mathbf{a}(\mathbf{s}_j^n) \leq \mathbf{a}(\mathbf{s}_{j+1}^n)$ for all j. The

a stream arrive in order, i.e., $a_{(\sigma_j)} \leq a_{(\sigma_j+1)}$ for all j. The above notation gives that the structure of incoming packet in a stream T_m consisting of r_m frames

5.2 Buffer Model

When the packets arrive in FIFO buffer that can store up to $B \ge k$ packets and which can send out one packet. At the beginning the buffer is empty. Every cycle consists of two steps. The first step is called the delivery step if the buffer is nonempty the packets are transmitted on the link. The second step is called the arrival step. In this step the packets arrives at the buffer. At the discretion of the buffer management

Volume 3 Issue 3, March 2014 www.ijsr.net algorithm, some packets will be dropped, while the other packets are stored in the buffer.

5.3 Weight priority algorithm

In the weight priority algorithm we have to calculate the rank for the frame and packet, the rank of the frame and the rank of the frameWe present the main algorithm called WEIGHTPRIORITY, which follows the design criteria. In the beginning of the arrival step of any cycle t, and for every frame η_1^{WE} define its rank at t by

 $ra_{\mathrm{E}}(\eta^{\mathrm{m}}) = (w_{\mathrm{E}}(\eta^{\mathrm{m}}, \mathrm{sxm}))$

For completeness, we also define a tie breaking rule for frames of the same stream, where given any two such frames corresponding to the same stream, while considering the frame with the lower index of the frame as having the highest rank.

Algorithm 1. WEIGHTPRIORITY

1: If f_t^{on} i is alive and $L_t(f_t^{on})$ yields to $A_t(f_t^{on})$ then 2: let $D_t(f_t^{on}) ep(L_t(f_t^{on}))$ be the minimal size set that yields to $A_t(f_t^{on})$ 3: Preempt $D_t(f_t^{on})$ 4: accept $A_t(f_t^{on})$ 5: else 6: reject $A_t(f_t^{on})$ 7: drop $R_t(f_t^{on}) \cap f_t^{on}$ 8: endif

6. Conclusion

The buffer management technique is used for avoiding the packet loss. Because in case of the streaming application packets depends on other packets. So, if there is a loss [6] in a packet the whole sequence is said to be waste. In order to avoid these problem we use buffer management schemes to discard some packet that depends on the ranking by providing the guidelines for the design of such algorithms,. We provided guarantees on its performance under any traffic conditions by proving it has a bounded competitive ratio. Securing multimedia data has become of utmost importance especially in the applications related to military purposes. Using innovative encryption algorithms for video sequences are necessary for protect the data. This can be done in future work.

References

- [1] Z.-L. Zhang, S. Nelakuditi, R. Aggarwal, and R.P. Tsang, "Efficient Selective Frame Discard Algorithms for Stored Video Delivery across Resource Constrained Networks," Real-Time Imaging, vol. 7, no. 3, pp. 255-273, 2001.
- [2] E. Gu⁻⁻ rses, G.B. Akar, and N. Akar, "A Simple and Effective Mechanism for Stored Video Streaming with TCP Transport and Server-Side Adaptive Frame Discard," Computer Networks, vol. 48, no. 4, pp. 489-501, 2005.
- [3] Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko, "Buffer Overflow

Management in QoS Switches," SIAM J. Computing, vol. 33, no. 3, pp. 563-583, 2004.

- [4] T. Stockhammer, H. Jenka_c, and G. Kuhn, "Streaming Video over Variable Bit-Rate Wireless Channels," IEEE Trans. Multimedia, vol. 6, no. 2, pp. 268-277, 2004.
- [5] Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko, "Buffer Overflow Management in QoS Switches," SIAM J. Computing, vol. 33, no. 3, pp. 563-583, 2004.
- [6] J.M. Boyce and R.D. Gaglianello, "Packet Loss Effects on MPEG Video Sent over the Public Internet," Proc. ACM Sixth Int'l Conf. Multimedia, pp. 181-190, 1998.
- [7] E.W. Knightly and N.B. Shroff, "Admission Control for Statistical QoS: Theory and Practice," IEEE Network, vol. 13, no. 2, pp. 20-29, 1999.
- [8] D.E. Wrege, E.W. Knightly, H. Zhang, and J. Liebeherr, "Deterministic Delay Bounds for VBR Video in Packet-Switching Networks: Fundamental Limits and Practical Trade-Offs," IEEE/ ACM Trans. Networking, vol. 4, no. 3, pp. 352-362, 1996.
- [9] S. Ramanathan, P.V. Rangan, H.M. Vin, and S.S. Kumar, "Enforcing Application-Level QoS by Frame-Induced Packet Discarding in Video Communications," Computer Comm., vol. 18, no. 10, pp. 742-754, 1995.
- [10] Awad, M.W. McKinnon, and R. Sivakumar, "Goodput Estimation for an Access Node Buffer Carrying Correlated Video Traffic," Proc. IEEE Seventh Symp. Computers and Comm. (ISCC), pp. 120-125, 2002.

Volume 3 Issue 3, March 2014 www.ijsr.net