
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

An Efficient Approach in Protection of Information 
Security via Collaborative Inference Detection 

  
Abilesh. P1 

 
1Sri Ramalinga Sowdambigai College of Science and Commerce, Department of Computer Science, 

Affiliated to Bharathiar University, Vadavalli – Thondamuthur Road, Onappalayam, Tamilnadu, India 
 
 

Abstract: This paper examines a wide variety of DoS and scanning attacks and shows that several categories (bandwidth based, claim-
and-hold, port-scanning) can be scalably detected. In addition to existing approaches for scalable attack detection, the proposed 
innovative data structure called Fuzzy partial completion filter (FPCF) that can detect claim-and-hold attacks scalable in the network 
with the introduction of membership and non membership degree of attack prediction. This paper analyzes FPCF both analytically and 
using experiments on real network traces to demonstrate FPCF can be tuned to achieve extremely low false positive and false negative 
probabilities. The experimental result shows that the proposed method performs better than the existing partial completing filter. 
 
Keywords: fuzzy partial completion filter, information security via collaborative inference detection, efficient approach for information 
security, information security using partial completion filters  
 
1. Introduction 
 
Intrusion detection is the act of detecting actions that attempt 
to compromise the confidentiality, integrity or availability of 
a resource. Intrusion detection does not, in general, include 
prevention of intrusions. Intrusion detection can be 
performed manually or automatically. Manual intrusion 
detection might take place by examining log files or other 
evidence for signs of intrusions, including network traffic. A 
system that performs automated intrusion detection is called 
an Intrusion Detection System (IDS).  
 
In the last three years, the networking revolution has finally 
come of age. More than ever before, we see that the Internet 
is changing computing as we know it. The possibilities and 
opportunities are limitless; unfortunately, so too are the risks 
and chances of malicious intrusions.  
 
1.1 Detection of DoS Attack 
 
Initially, network administrators will first detect symptoms 
such as uniform degradation of network or device 
performance. Uniformly degraded performance could be due 
to resource consumption of bandwidth attack. Point-to-point 
attack can also occur to specific devices in the network, 
causing the CPU utilization to run up and failure of the host 
to serve other users. Investigating Denial of Service Attacks 
often require the use of sniffers or logging at the router to 
determine the extent of the attack, whether it is propagating 
to other hosts in the network, and to identify the pattern or 
signature of the attack. Analyzing router and host logs may 
or may not show the real nature of the attack or may cause 
false reporting. In some experience with organizations 
installing commercial network Intruder Detection System, 
mis-configured attack signature, provided wrong alert 
indicators. A sniffer at this point helps to identify the real 
threat. Based on experience, mis-configuration of devices 
such as hubs and routers can also cause DoS effect. Thus, it 
is advisable not to eliminate any possibility until the packets 
are thoroughly examined. 
 

DoS attacks are often double edged sword, the source host 
(or spoofed host) will be affected just as much as the target 
host. Due to this situation, an attacker will have to have 
means to monitor if the attack is successful, by planting a 
sniffer in the spoofed network or the target network. This 
situation is proven in incidents involving smurf attacks and 
syn flood attacks since these connection requests create a 
massive spur of return packets to the source IP, and often 
causing a similar impact to the source and the destination IP. 
Using spoofed IP, the spoofed machine will be swamp with 
return packets instead. Spoofed source IP makes the attack 
very difficult to be traced to the originator machine. 
However, it is also very difficult to spoof IPs, especially 
when the attacker is within a network with Ingress filters at 
the routers. 
 
In my experience in handling Incident Response, there were 
a few incidents involving both parties experiencing DoS 
attack reporting to us, claiming the attack was initiated vice-
versa, due to the fact that their respective firewalls were 
logging only one direction of the traffic rather than bi-
directional. Further analysis and correlation of the logs 
revealed that the attack was coming from one of them. 
 

 
Figure 1: Detection of DoS Attack 

 
The NANOG ISPSec Meeting/DDoS BoF described the 
initial intrusions in which hosts are compromised using 
known exploits and later rootkit to take full control of the 
host, before the agents are planted on the hosts. Networks 

Paper ID: OCT141126 1053



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

with close proximity to high-volume backbones, large 
population of vulnerable hosts and weak system 
administration make good agent sites. 
 
Coordination and cooperation between network providers 
are crucial for diagnosis, tracing, and control of distributed 
attacks. 
 
1.2 An Introduction to DoS Countermeasures  
 
A comprehensive countermeasure for DoS attacks has four 
distinct elements: prevention, detection, mitigation, and trace 
back, shown together in Figure 1. Before an attack occurs, 
there should be existing prevention mechanisms that are 
capable of eliminating the threat of the attack. When the 
attack does occur, only a successful and timely detection of 
the attack will allow the appropriate mitigation mechanism 
to be deployed. During or following the attack, a method 
called trace back can be used to determine the source of the 
attack. In addition, trace back can also help improve future 
methods for detecting and preventing a DoS attack. The 
dependence upon all four of these items is crucial for a 
successful DoS countermeasure. 

 

 
Figure 2: Components of a DoS Countermeasure 

 
In addition to these four items, a DoS countermeasure should 
be designed to defend against attacks on various layers of the 
Internet stack. Among the five layers of the Internet protocol 
stack, a network-based DoS attack is associated with three of 
the five layers: the application, transport, and network layer. 
In order to design the most effective countermeasure against 
DoS attacks, we must address the security vulnerabilities at 
each layer and introduce defense mechanisms that are 
capable of mitigating specific threats at the appropriate layer.  
 
In computer security, there is no “magical panacea” for all 
potential threats. The only way to defend a computer from 
attacks is to design and employ a number of protection 
mechanisms that are designed to combat a specific threat. 
The combined use of all of these mechanisms will provide 
the greatest protection against a wide range of attacks. The 
most important aspect to the design of a DoS 
countermeasure is to prevent the countermeasure from 
becoming the target of a new and unique DoS attack. All 
DoS attacks target some kind of vulnerability and if the 
vulnerability exists within the DoS countermeasure, then it 
needs to be redesigned.  
 
1.3 Detection  
 
One of the most important components in designing a DoS 
countermeasure is to determine and establish the optimal 
methodology to detect an ongoing attack. Most detection 
mechanisms rely on some form of an application or software 

that resides on a host system or within the network that can 
observe traffic patterns or resource usage. These programs 
typically are configured to detect anomalies or deviations 
from normal behavior. When anomalies are detected, alerts 
are created so that either a system administrator or an 
automated program can quickly determine the type of the 
attack and decide which actions to take to safely minimize 
the effects of the attack and return the system back to its 
original state. 
 
Most attacks are detected by an end host or server. However, 
in many cases a DDoS can affect the routers within the 
network. In the case of a large-scale DDoS flooding attack, 
detecting the attack should be done throughout the network. 
To combat a DDoS attack, a distributed defense is essential. 
In general, the further downstream the detection process is 
implemented, the easier it will be to determine if there is an 
ongoing attack. The study of detecting a DoS attack is a very 
important area for network security research. However, it is 
beyond the scope of the work for this paper. Despite its 
importance, we assume that throughout the remainder of this 
paper that there exists a simple and basic detection 
mechanism that will activate the appropriate mitigation 
mechanism.  
 
2. Literature Review 
 
Although DoS attacks existed during the 1980s and early 
1990s, at the beginning they were not viewed as high-profile 
security incidents by the general public[1,2]. This perception 
started to change as the Internet was becoming a mainstream 
medium. In this section, we present a timeline of the most 
notable DoS incidents, followed by a brief description of 
each new type of attack used at each incident. 
 
Before the year 2000 In September 1996, a “SYN Flood" 
DoS attack took the New York City Internet service provider 
Panix off-line for a week, while subsequent attacks disabled 
the web servers of the Internet Chess Club and The New 
York Times. Two months later, the first commercial product 
specifically designed for DoS attacks was released. It 
detected attacks by watching for incoming SYN packets, and 
responded by resetting the connections if the victim 
computer received traffic at rate higher than a certain 
threshold. However, it failed to halt an attack on Webcom's 
main server which knocked thousands of commercial 
websites off-line. The attacker had randomized the IP 
addresses and the attack rate was 200 packets/sec, which was 
very high at the time[3]. 
 
In “SYN Flood" attacks, the attacking system sends SYN 
messages to the victim server system that appear to be 
legitimate but in fact reference a client system that is unable 
to respond to the SYN/ACK messages. This means that the 
final ACK message will never be sent to the victim server 
system and due to the many half-open connections, the 
victim server system becomes eventually unable to accept 
any new incoming connections. 
 
In January 1997, a teenager attacked the IRC network 
Undernet and several ISPs in Norway, Romania, the United 
Kingdom and the United States, with a combination of 

Paper ID: OCT141126 1054



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

“ping" and “SYN Flood" attacks [4]. At each stop, he logged 
onto the server, obtained root access, then deleted files and 
cancelled accounts. The “ping attack" is one of the simplest 
DoS attacks, where the victim is flooded with more 
TCP/ICMP packets than it can handle. In “IRC-based DDoS 
attacks", an IRC communication channel is used to connect 
the client to the agents. The attackers can use legitimate IRC 
ports for sending commands to the agents, which makes their 
tracking more difficult, because IRC servers tend to receive 
large volumes of traffic. The attacker no longer needs to 
maintain a list of agents, since she can simply log on to the 
IRC server and see a list of all available agents.  
 
The agent software installed in the IRC network usually 
communicates with the IRC channel and notifies the attacker 
when the agent is up and running. IRC networks also 
provide for easy file sharing, which is one of the passive 
methods of agent code distribution and an easy way for 
attackers to secure secondary victims to participate in their 
attacks. 
 
In January 1998, DALnet and other IRC networks became 
targets of “smurfing", where the attacker is using ICMP echo 
request packets directed to IP broadcast addresses from 
remote locations to generate DoS attacks. There are three 
parties in these attacks: the attacker, the intermediary, and 
the victim [5,6]. The intermediary receives an ICMP echo 
request packet directed to the IP broadcast address of their 
network. If the intermediary does not filter ICMP traffic 
directed to IP broadcast addresses, many of the machines on 
the network will receive this ICMP echo request packet and 
send an ICMP echo reply packet back. When all the 
machines on a network respond to this ICMP echo request, 
the result can be severe network congestion and outages. 
When the attackers create these packets, they do not use the 
IP address of their own machine as the source address. 
Instead, they create forged packets that contain the source 
address of the attacker's intended victim.  
 
In June 2002, the Website of the government of Pakistan 
was the victim of a politically motivated attack launched by 
Indian hackers that used “YAHA", a worm with Denial of 
Service payload. Similarly to “Code Red", “YAHA" caused 
an infected computer to make repeated connection attempts 
to the Pakistani government's website and attempted to 
terminate anti- virus and firewall software [7]. 
 
From 2004 up to till date since 2004, DoS incidents have 
been deliberately not widely publicized, as the scene has 
shifted to the sensitive field of economic crime and DoS 
incidents harm the victims' reputation in the eyes of the 
increasingly security-aware public. Major new trends include 
Cyber-extortion and bot armies [8]. 
 
In January 2006, the million dollar page, a British teenager's 
novel advertising idea to earn him $1m in 4 months, became 
very quickly famous around the world [9]. 
 
In May 2006, a 20-year old “botmaster" was sentenced to 
five years in prison for hijacking 500,000 computers. He was 
selling access to them to other hackers, who used them to 
launch Dos attacks and send spam emails. More recently, 

during the August 2008 armed conflict between Russia and 
Georgia, a series of coordinated DoS attacks of unidentified 
origin crippled Georgia's Internet infrastructure. Similar DoS 
attacks had been launched a year earlier against Estonia's 
Internet infrastructure [18-20]. 
 
Although DoS attacks are launched since the beginning of 
computer networks, they were not considered a significant 
topic of research until relatively recently, when they started 
harming ISPs, governmental websites and the e-commerce. 
The effectiveness of these attacks and their subsequent 
publicity prompted the influx of newer and even more 
effective attacking techniques against an increasingly wide 
range of targets. With DoS techniques becoming distributed 
and powerful attacking tools being readily available on the 
Internet, it became quickly apparent that DoS cannot be 
handled in the same way as other computer security issues. 
 
For example viruses have always been countered with 
dedicated antivirus software running on the victim computer, 
but DoS attacks are aiming at overwhelming the target 
resource altogether, so that the victim cannot employ a 
defence on its own. The fact that the Internet operates on old 
networking protocols with limited provision for security is 
yet another advantage for the attackers. Of course, the 
increase in research interest did provide solutions, which 
have recently managed to halt the escalation of the DoS 
phenomenon. Distributed defence techniques have been 
designed and the majority of the DoS attacks can now be 
countered in networks where some sort of defence has been 
deployed. This can be considered as the end of an era, during 
which a “script-kiddie" could download a tool and launch an 
attack against practically any website. 
  
Today, attacks have shifted towards economic crime and 
cyber-warfare, and although less widespread they can be 
much more harmful. As a result, the new era of DoS research 
has to produce even more effective solutions with even less 
overhead in the absence of an attack and as small disruption 
in the presence of one.  
 
3. Proposed Framework 
 
This paper concentrates on Scalable Intrusion Detection 
Network systems (SIDS). This is slightly a different 
approach to intrusion detection. The concept of the this 
system is simple: it determines "normal" network activity 
and then all traffic that falls outside the scope of normal is 
flagged as anomalous (not normal). SIDS systems attempt to 
learn network traffic patterns on a particular network. This 
process of traffic analysis continues as long as the SIDS 
system is active, so, assuming network traffic patterns 
remain constant, the longer the system is on the network, the 
more accurate it becomes. By analyzing network traffic and 
processing the information with complex statistical 
algorithms, SIDS systems look for anomalies in the 
established normal network traffic patterns. All packets are 
given an anomaly score (indicating the degree of irregularity 
for the specific event) and if the anomaly score is higher than 
a certain threshold, the IDS will generate an alert. 
 
 

Paper ID: OCT141126 1055



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

While the very success of the Internet is due to its open 
model in which any computer can send to any other 
computer, this openness also allows attackers to send 
malicious messages that can cause damage to other hosts and 
networks, sometimes at great cost. Thus, the field of network 
security has sprung up in an attempt to prevent or mitigate 
attacks against campus, enterprise, and ISP networks. The 
earliest network security solutions attempted to secure 
Internet hosts using anti-virus software running at end-
nodes, and firewalls installed at network vantage points (or, 
more recently, at hosts themselves). Unfortunately, end-node 
based approaches must be widely deployed within a network 
to protect against attacks. They also do very little to mitigate 
bandwidth attacks that may be blocked at the end-nodes but 
consume so much internal network bandwidth that the 
network is unusable. However, we can divide the techniques 
of intrusion detection into two main types.  
 
3.1 Partial Completion Attacks 
 
Such attacks are also known as claim-and-hold attacks. The 
basic theme in these attacks is to grab a precious resource 
and not release it thereby denying service to legitimate 
clients. The classic example of a partial completion attack is 
syn-flooding [13]. In syn-flooding, the attacker initiates 
several connections to the server by sending TCP SYN 
packets with spoofed IP addresses and never terminates any 
of these connections. In a variant called Naptha, the attacker 
initiates a connection and finishes the initial three way 
handshake, but does not do any further activity forcing the 
connection to time out. In both these attacks, we can see that 
the precious resource namely, connection memory, is 
claimed but never released. Port scans are often performed 
by attackers as preliminary reconnaissance to identify a large 
number of vulnerable hosts in the Internet. Henceforth, we 
refer to these myriad activities as just scanning. 
 
3.2 Bandwidth Attacks 
 
Finally, the third kind of attacks we discuss in this paper are 
what are commonly called bandwidth attacks. In such 
attacks, an attacker or a set of compromised slaves 
(zombies), continuously pound a victim with a large number 
of packets, crippling normal services. In other such attacks, 
the attacker can take advantage of other machines to amplify 
the magnitude of traffic directed towards a particular 
destination. Smurf, fraggle, and reflector attacks fall into this 
category. The common theme in all such attacks is huge 
traffic volume.  
 
3.3 Attacks That Do Scanning 
 
Host scanning represents an important component of several 
attacks including most worm epidemics2 [14]. Thus, several 
recent worms such as Code Red-II, Nimda, etc., propagated 
by scanning other vulnerable hosts in the Internet. A second 
example is probing for backdoors installed on various 
machines either installed during worm infection or by other 
means such as viruses. Such activity also exhibits scanning 
behavior. Finally, horizontal (multiple hosts and same port) 
and vertical (one machine, multiple ports).  
 

3.4 Problem Statement 
 
A computer system should provide confidentiality, integrity 
and assurance against denial of service. However, due to 
increased connectivity (especially on the Internet), and the 
vast spectrum of financial possibilities that are opening up, 
more and more systems are subject to attack by intruders. 
These subversion attempts try to exploit flaws in the 
operating system as well as in application programs. 
 
4. Proposed System 
 
The proposed system concentrates on any scalable intrusion 
detection mechanism must deal with these two issues. Thus, 
the contributions of this paper are as follows. 
 
1) Framework: Our paper initiates the study of scalable 

attack detection schemes. We use behavioral aliasing and 
spoofing as a framework to analyze such techniques. 

2) Technique: As a specific example, we focus on scalable 
DDoS and scan detection, and propose a specific new 
scalable technique called partial completion filters 
(PCFs).We analyze behavioral aliasing and spoofing 
characteristics of PCFs in different deployment scenarios. 

3) Evaluation: To evaluate the efficacy of PCFs, we use a 
theoretical model later validated by real traces from two 
different ISPs. For example, in an OC-48 traffic trace for 
an entire day. 

 
4.1 Proposed Framework 
 
1) Packet Sniffer: capture the packets when data is 

transferred to or from any PC in the network. 
2) Network Testbed: build a network of nodes, where any 

node can send and receive data with other nodes. 
3) Streaming: one of the nodes will be acting as a server and 

all the other nodes will be sending data to the receiving 
node. The sending nodes will send data at various rates 
(speeds). 

4) Detection: the receiving node will calculate the bandwidth 
from each sending node in order to identify the node that 
is sending too much data in short time. The packet sniffer 
will be running in the receiving node. It is performed 
using Fuzzy Partial Completion filter. 

5) Countermeasure: the node which is sending too much 
data in very short time is identified as attacker, and that 
node is removed from the network, and the attacker cannot 
communicate with the server from then on. Thus, the 
attacker is identified and removed bandwidth from each 
node is shown in kbps and graphs. 

 
4.2 Intelligent fuzzy logic based Partial Completion Filter 
 
Intelligent fuzzy logic decision disposes information based 
on fuzzy or non-fuzzy reasoning rules[10-12]. It makes self-
adaptive decision in light of mature experience. The general 
fuzzy decision process consists of three parts: fuzzy 
quantitative disposal, fuzzy decision rules and fuzzy 
decision. The fuzzy quantitative disposal makes the real 
input parameter as a fuzzy set, and then the fuzzy decision 
carries out the output calculation based on the fuzzy set and 
fuzzy operators defined at fuzzy decision rules. This section 

Paper ID: OCT141126 1056



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

will describe in detail how fuzzy logic can be utilized in 
DDoS flood attack intensity decision. 
 
4.3 Attack intensity decision 
 
Based on the basic theory and method of fuzzy mathematics, 
we propose an intelligent DDoS flood attack intensity 
decision system. DDoS flood attack intensity itself includes 
fuzziness, because the boundary between the light attack, 
moderate attack and severe attack is not well defined. So 
when judging the intensity of attack, one should take the 
intensity of background traffic into consideration. For 
example, a DDoS flood attack is considered as light attack if 
it causes slight decline of the network performance when the 
traffic load is high, but is considered as severe attack if it 
causes serious decline of the network performance when the 
network load is light [17]. In the proposed decision system, 
the DDoS flood attack intensity decision rules and 
operations are expressed by fuzzy sets, and then we feed 
these fuzzy decision rules and related information into 

knowledge repository.  
 
The network elements take the dynamic process of actual 
attack into consideration, and then use fuzzy reasoning to 
determine the intensity of attack dynamically and 
intelligently. In this paper, the structure of fuzzy decision is 
two dimensional input and one-dimensional output. The two 
inputs are the Hurst parameter and its changing rate. The 
Hurst parameter reflects the influence of dynamic normal 
traffic on attack intensity and the changing rate reflects the 
influence of attack on normal traffic. The output is the 
intensity of the attack. As shown in Figure 3, the fuzzy 
decision process of the intensity of the attack consists of 
three parts: Hurst parameter and its changing rate 
fuzzification, fuzzy decision rules of attack intensity and 
fuzzy reasoning of attack intensity.  
 
The description of each part of the fuzzy decision process is 
as follows: 

 
Figure 3: Fuzzy Decision Process 

 
4.4 Hurst Parameter and its Changing Rate 
 
Fuzzification- Fuzzification makes the real input parameters 
of Hurst parameter and its changing rate as fuzzy sets[15]. 
According to the change scope of Hurst parameter and its 
changing rate, we define the universe of discourse of the 
Hurst parameter as UH={0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
1.1}; the universe of discourse of the changing rate as 
UHC={0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 
0.50}. The fuzzy sets of UH and UHC are H’={S, M, B} and 
HC’={S, M, B}, where “S” stands for small, “M” the 
moderate, and “B” the big. The variable’s membership 
degree function of each fuzzy language satisfies normality 
assumption  
 

   
where v and b2 are the mean and variance of the membership 
degree function. Through the above equation, we can obtain 
fuzzy judgment model of every parameter as well as the 
membership degree assignments of every fuzzy subset.  
 
Fuzzy decision rules of attack intensity- The decision rules 
take note of the relationship between input fuzzy sets and 
output fuzzy sets [18]. Define the fuzzy decision result of 
DDoS flood attack intensity as a variable L, and the fuzzy set 
of L as L’={LA, MA, SA}, where “LA”, “MA” and “SA” 
represent light DDoS flood attack, moderate DDoS flood 
attack and severe DDoS flood attack, respectively. 
Considering the relationship between Hurst parameter, its 
changing rate and DDoS flood attack intensity, we can get 
the fuzzy decision rules displayed in Table 1. 

Table 1: Fuzzy decision rules 

 
 
Fuzzy reasoning of attack intensity- After fuzzifying the 
input parameters Hurst parameter and its changing rate, we 
can reason the intensity of attack according to decision rules 
presented in Table 1. For example, when the Hurst parameter 
is considered moderate, we infer there is a light DDoS flood 
attack if the changing rate of the Hurst parameter is 
considered small. In a similar way, there is a moderate DDoS 
flood attack if the changing rate of the Hurst parameter is 
moderate, and severe DDoS flood attack if the changing rate 
of the Hurst parameter is big. 
 
Description-Distributed denial-of-service detection: 
*start listener 
*create a node and enter node name as 'server' 
*create two or more nodes and enter its name as client1, 
client2... 
 
The concept is that, we create a network containing a server 
and multiple clients. Client nodes will be sending data to 
server node. The server node will display the bandwidth 
(speed) at which the client nodes sending the data. The client 
nodes can send data in two modes: request mode and attack 
mode. While sending in request mode, the data will be sent 

Paper ID: OCT141126 1057



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

at normal speed. While sending in attacking mode, the data 
will be sent in abrupt speed. That is, too much requests will 
be sent to the server which slows down the available 
network bandwidth of the server. After some time, click the 
prevent button in the server node. The client nodes which are 
sending data at bandwidth greater than threshold bandwidth 
are kicked out from the network. That is, the attack nodes are 
identified and are removed from the network. They no 
longer can communicate with the server. The data we are 
sending is a big matrix. The user needs to specify the 
number of rows and columns and a big matrix will be 
created with random 'double' data type numbers. 
 
Network Setup- A network is setup with configurable 
number of nodes in the system. The nodes in the setup can 
communicate each other. We generate huge data in the form 
of matrices in different nodes, and the data are sent between 
the nodes. 
 
Packet Sniffer- We capture the packets sent between the 
computers or through any network interface available in the 
computer. The sniffer works by calling WinPcap DLL, 
through JNI (java native interface).  
 
Packets Data Parser- Here, we decode captured or stored 
(tcpdump files) packets for obtaining the packet data and its 
header fields like source ip, destination ip, source port, 
destination port, ttl, length, etc. Both incoming and outgoing 
data are captured so that data routed to and from a specific 
computer can be separated. 
 
Attack Detection- Here, we implement the proposed method 
to detect the attack nodes. The nodes, which send data in 
abrupt speed are isolated in the network, by analyzing the 
network traffic between each node in the network. 
 
Results and Analysis- The proposed method is tested with 
various network traffics, and a log containing the statistical 
data like time, kbps, etc. is generated. 
 
5. Experimental Results 
 
In this section, we conduct sets of experiments on data sets 
in terms of the classification error using the optimum 
training sets for testing. The classification performance is 
investigated by considering the performance with the lowest 
error rate and the corresponding value of k. 
 
5.1 Evaluation of Attack Detection 
 
The performance evaluation of proposed system is shown 
using accuracy rate and recall rate. Its measurement using F-
measure with matrix confusion standard are shown in the 
Table 2. 
 
 
 
 
 

 
 

Table 2: Confusion matrix for a binary classification 
problem in which the classes are not equally important 

Actual class Predicted Class 
 + - 

+ TP FN 
- FP TN 

 
 The True Positive (TP): corresponds to the number of 

positive examples correctly predicted by the classification 
model. 

 The False Negative (FN): corresponds to the number of 
positive examples wrongly predicted as negative by the 
classification model. 

 The False Positive (FP): corresponds to the number of 
negative examples wrongly predicted as positive by the 
classification model. 

 The True Negative (TN): corresponds to the number of 
negative examples correctly predicted by the classification 
model. 

 
Accuracy means probability that the algorithms can correctly 
predict positive and negative examples. Sensitivity means 
probability that the algorithms can correctly predict positive 
examples. Specificity means probability that the algorithms 
can correctly predict negative examples.  
 

  
 
The purpose of Experimental results is to show synflood 
attacks in the high speed network. In the High speed network 
attacker can attack server system by sending more requests 
as a authorized host. Finally attacker denial the service of 
actual user.  
 
The following are the Fuzzy PCF experimental results: 
 

Table 3: Attacks on Victim IP 
Source IP Victim IP Attack Name No.of Syns

192.168.1.1 192.168.1.2 Syn-flood 512
192.168.1.4 192.168.1.2 Syn-flood 512
192.168.1.5 192.168.1.2 Syn-flood 512

192.168.1.10 192.168.1.2 Syn-flood 512
192.168.1.12 192.168.1.2 Syn-flood 512
192.168.1.14 192.168.1.2 Syn-flood 512
192.168.1.16 192.168.1.2 Syn-flood 512

 
The table shows the evaluation of the proposed method 
Fuzzy Partial Completion Filter, a prototype of DDoS attack 
system has been established, as an example, the SYN 
Flooding, which is the most well-known DDoS attacks, is 
employed in our method. We used this proposed approach 
for attacking detection, and the proposed method works as 
the packet filter at the victim side. For contrast, we also 
implement the 32 bits strict filtering algorithm of FPCF.  

 

Paper ID: OCT141126 1058



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Table 4: Performance Comparison based on Testing Criterion with Statistical, Partial Completion and Fuzzy Partial 
completion Filters 

Testing Criterion 

Statistical Filter Partial Completion Filter Fuzzy Partial Completion Filter
Correctly 
Classified 
Instances

Time to build 
Model 

(seconds) 

Correctly 
Classified 
Instances 

Time to 
build Model 

(seconds) 

Correctly 
Classified 
Instances 

Time to build 
Model (seconds)

Training set itself 51.28 0.15 91.81 0.74 76.55 0.01
Percentage split (50% train 50% test) 59.67 0.07 69.91 0.57 70.8 0.01
Percentage split (70% train 30% test) 58.09 0.08 74.26 0.44 75 0.01
Percentage split (80% train 20% test 56.04 0.08 67.03 0.42 74.73 0.02

 

Perfomance comparison based on accuracy 

0

20

40

60

80

100

Training set itself Percentage split
(50% train 50%

test)

Percentage split
(70% train 30%

test)

Percentage split
(80% train 20%

test

Statistical Filter Partial Completion Filter Fuzzy Partial Completion Filter
 

Figure 4: Comparing Accuracy among Statistical, Partial 
Completion and Fuzzy Partial completion Filters 

 
As shown in Figure 4, the highest accuracy was observed. 
Despite the high accuracy rate of Fuzzy Partial Completion 
filter, the accuracy curve is unstable when the data is spilt 
into training and test, whereas Statistical and Partial 
Completion filter show stable accuracy for the same dataset. 
The accuracy rate of Statistical Filter is the lowest among the 
three algorithms. 
 

Performance Comparison based on Time

0

0.1554

0.3108

0.4662

0.6216

0.777

Training set itself Percentage split
(50% train 50%

test)

Percentage split
(70% train 30%

test)

Percentage split
(80% train 20%

test

Statistical Filter Partial Completion Filter Fuzzy Partial Completion Filter
 

Figure 5: Comparing Learning Time among Statistical, 
Partial Completion and Fuzzy Partial completion Filters 

 
Figure 5 illustrates the learning time comparison of the 
algorithms. The Fuzzy Partial completion Filter algorithm 
consumes far more learning time than the other algorithms. 
The learning time of Fuzzy Partial completion Filter drops 
drastically at percentage split of 50% and 70%. The learning 
time of Statistical drops at percentage split of 50%. The 
differences in learning time for Partial Completion filter for 
different percentage split was found to be not significant. 

 
 
 
 

 Table 5: Classification Result of Fuzzy Partial Completion 
Filter 

Category Number of Testing 
Packets 

Correct 
Classification 

Incorrect 
Classification

Normal 4813 4566 247 
Attack 124562 123159 1403 

 
The classification result of testing dataset using proposed 
algorithm only shows in Table 5. According to the statistics 
the system can correctly detect 94.87% for normal traffic and 
98.87% for attack traffic. It incorrectly classified traffic in 
5.13% for normal class and 1.13% for attack class. Out of 
total number of packets (Attack + Normal packets) 129375, 
1650 packets are classified as others. 
 

Number of Testing  Packets 

0

20000

40000

60000

80000

100000

120000

140000

Normal  Attack   

Number of Testing 
Packets  

 
Figure 6: Number of Testing Packets 

 

Correct Classification

0

20000

40000

60000

80000

100000

120000

140000

Normal  Attack   

Correct Classification

 
Figure 7: Correct Classification 

 

Paper ID: OCT141126 1059



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

Incorrect  Classification

0

200

400

600

800

1000

1200

1400

1600

Normal  Attack   

Incorrect  Classification

 
Figure 8: Incorrect Classification 

 
5.2 Recall and Precision: 
 
These are two widely used metrics employed in applications 
where successful detection of one of the classes is 
considered more significant than detection of the other 
classes. A formal definition of these metrics is given below. 
The recall and Precision values are already classified. 
 

 
 

Table 6: Performance comparison based on Precision and 
Recall 

Algorithm Precision Recall
Statistical Filter 68.2 69
Partial Completion Filter 75.6 76
Fuzzy Partial Completion Filter 96.3 98.2

 

Comparison based on Precision and Recall

0

20

40

60

80

100

120

Statistical Filter Partial Completion
Filter

Fuzzy Partial
Completion Filter

Precision

Recall

 
Figure 9: Comparison based on Precision and Recall 

 
6. Conclusion 
 
It appears to be widely perceived that detecting intrusions 
scalably within the network is a bad idea. Unfortunately, that 
causes security devices to choose between performance 
(which requires low memory) and completeness (which 
appears to require per-flow state). This paper is a gentle first 
step towards suggesting that this tradeoff may not be as 
Draconian as is commonly thought. While the general 
problem is still very hard (and indeed for attacks such as 
evasion attacks, we believe that aggregated solutions cannot 
work without causing unacceptably high false positives), our 
paper shows some progress for bandwidth- based and partial 
completion DoS attacks, and scan-based attacks including 

worms.  
  
This paper explores this possibility in the specific context of 
DoS attacks and scan attacks by introducing fuzzy partial 
completion filter. While the existing approaches have not 
harped on this point of membership value, doing DoS 
detection in the network also finesses the need for traceback 
and/or manual intervention, and allows enterprise networks 
and ISPs to automatically filter out attacks before they enter 
(or leave) their networks. More fundamental than the 
specific techniques discussed in this paper is the general 
question of scalable behavior-based detection of attacks 
within the network. 
 
This paper concentrates on considerable attention in the 
research and product literature, and solutions that scale are 
developed under java platform. As security functions 
become more prevalent in the edge first and then the core, it 
is natural to expect the same attention to be paid to scalable 
security solutions. More than just introducing the question 
and suggesting a specific mechanism for some problems, our 
paper shows that the issues of behavioral aliasing and 
spoofing are key questions that must be addressed in any 
scalable solution, even if the only response is to simply 
ignore the problem. These two provide a simple lens to view 
existing and future work in attack detection, and can perhaps 
suggest new solutions to an even broader class of attacks. 
The experimental result concludes that the proposed fuzzy 
based partial completion filter performs the detection of IDS 
very effectively comparing the existing approaches 
represented in this work. 
 
References 
 
[1] M. Roesch, Snort. [Online]. Available: 

http://www.snort.org 
[2] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal 

analysis of network traffic anomalies,” in Proc. 2nd 
ACM SIGCOMM Internet Measuremen Workshop, 
2002, pp. 71–82. 

[3] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, 
“Sketch-based change detection: Methods, evaluation, 
and applications,” in Proc. 3rd ACM SIGCOMM Internet 
Measurement Conf., 2003, pp. 234–247. 

[4] S. J. Staniford, “Containment of scanning worms in 
enterprise networks,” J. Computer Security, 2004, to be 
published. 

[5] ForeScout Technologies. [Online]. Available: 
http://www.forescout.com 

[6] D. Moore, G. Voelker, and S. Savage, “Inferring 
Internet denial of service activity,” in Proc. 10th 
USENIX Security Symp., Aug. 2001, pp. 9–22. 

[7] Mazu Publishing. [Online]. Available: 
http://www.mazu.com 

[8] Arbor Networks. [Online]. Available: 
http://www.arbornetworks.com 

[9] H.Wang, D. Zhang, and K. Shin, “Detecting SYN 
flooding attacks,” in Proc. IEEE INFOCOM, 2002, pp. 
1530–1539. 

[10] V. Paxson, “Bro: A system for detecting network 
intruders in realtime,” Computer Networks, vol. 31, no. 
23–24, pp. 2435–2463, 1999. 

Paper ID: OCT141126 1060



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

[11] K. Levchenko, R. Paturi, and G.Varghese, “On the 
difficulty of scalably detecting network attacks,” in 
Proc. 11th ACM Conf. Computer and Communications 
Security, 2004, pp. 12–20. 

[12] R. Keyes, “The Naptha DoS vulnerabilities,” [Online]. 
Available:http://www.cert.org/advisories/CA-2000-
21.html 

[13] N. Weaver, V. Paxson, S. Staniford, and R. 
Cunningham, “A taxonomy of computer worms,” in 
Proc. ACM Workshop of Rapid Malcode (WORM), 
2003, pp. 11–18. 

[14] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn 
the Internet in your spare time,” in Proc. 11th USENIX 
Security Symp., Aug. 2002, pp. 149–167. 

[15] MyDoom.B Virus. [Online]. Available: http://www.us-
cert.gov/cas/techalerts/TA04-028A.html 

[16] CERT Advisory CA-2001-19, “Code Red” Worm 
Exploiting Buffer Overflow In IIS Indexing Service 
DLL, [Online]. 
Available:http://www.cert.org/advisories/CA-2001-
19.html 

[17] CERT Advisory CA-2001-26 NimdaWorm, 
[Online].Available: http:// www.cert.org/advisories/CA-
2001-26.html 

[18] CERT Advisory CA-1998-01 Smurf IP Denial-of-
Service Attacks,[Online]. Available: 
http://www.cert.org/advisories/CA-1998-01.html 

[19] V. Paxson, “An analysis of using reflectors for 
distributed denial-ofservice attacks,” Comput. Commun. 
Rev., vol. 31, no. 3, Jul. 2001. 

[20] T. M. Gill and M. Poletto, “MULTOPS: A data-
structure for bandwidth attack detection,” in Proc. 10th 
USENIX Security Symp., 2001, pp. 23–38. 

 
Author Profile 
 

Abilesh received the M.Sc. Degree in Information 
Technology from Shri Nehru Maha Vidyalaya College 
of Arts & Science, Affiliated to Bharathiar University, 
Coimbatore in 2012 and pursuing M.Phil. degree in 

Computer Science from Sri Ramalinga Sowdambigai College of 
Science & Commerce (Affiliated to Bharathiar University), 
Coimbatore.  

Paper ID: OCT141126 1061




