On Bc-open sets

Raad Aziz Al-Abdulla¹, Ruaa Muslim Abed²

^{1, 2}Department of Mathematics, College of Computer Sciences and Mathematics, University of AL-Qadisiyah

Abstract: In this paper, we introduce a new class of open sets, called Bc-open sets, it is denoted and studied. Also, we have studied of definition Bc-paracompact spaces and nearly Bc-paracompact spaces and have provide some properties of this concepts.

Keywords: θ-open, Bc-open

1.Introduction

In [5] H. Z. Ibrahim introduced the concept of Bc-open set in topological spaces. This paper consist of two sections. In section one, we give similar definition by using of Bc-open sets and also we proof some properties about it. In section two we obtain new a characterization and preserving theorems of Bc-paracompact spaces, nearly Bc-paracompact spaces and the product of space $X \times Y$ where X is Bc-paracompact space and Y is θ -compact space.

Definition(1.1)[3]:

Let X be a topological space and $A \subset X$. Then A is called bopen set in X if $A \subseteq \overline{A^{\circ}} \cup \overline{A^{\circ}}$. The family of all b-open subset of a topological space (X, τ) is denoted by $BO(X, \tau)$ or (Briefly BO(X)).

Definition(1.2)[5]:

Let X be a topological space and $A \subset X$. Then A is called Bcopen set in X if for each $x \in A \in BO(X, \tau)$, there exists a closed set F such that $x \in F \subset A$. The family of all Bc-open subset of a topological space (X, τ) is denoted by $BcO(X, \tau)$ or (Briefly BcO(X)), A is Bc-closed set if A^c is Bc-open set. The family of all Bc-closed subset of a topological space (X, τ) is denoted by $BcC(X, \tau)$ or (Briefly BcC(X)).

Remark(1.3):

It is clear from the definition that every Bc-open set is bopen, but the converse is not true in general as the following example:

Let $X = \{1,2,3\}$, $\tau = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$. Then the closed set are: $X, \phi, \{2,3\}, \{1,3\}, \{3\}$. Hence $BO(X) = \{\phi, X, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\}\}$ and $BcO(X) = \{\phi, X, \{1,3\}, \{2,3\}\}$. Then $\{1\}$ is b-open but $\{1\}$ is not Bcopen.

Definition (1.4)[10]:

Paper ID: OCT14501I

- 1) Let X be a topological space and $A \subset X$. Then A is called θ -open set in X if for each $x \in A$, there exists an open set G such that $x \in G \subset \overline{G} \subset A$. The family of all θ -open subset of a topological space (X, τ) is denoted by $\theta O(X, \tau)$ or (Briefly $\theta O(X)$).
- 2) Let X be a topological space and $A \subset X$. A point $x \in X$ is said to θ -interior point of A, if there exist an θ -open set U such that $x \in U \subset A$. The set of all θ -interior points of A is called θ -interior of A and is denoted by $A^{\circ \theta}$.

3) Let X be a topological space and $A \subset X$. The θ -closure of A is defined by the intersection of all Bc-closed sets in X containing A, and is denoted by \bar{A}^{θ} .

Remark (1.5)[5]:

- 1) Every θ -open is Bc-open.
- 2) Every θ -closed is Bc-closed.

Example (1.6):

The intersection of two Bc-open sets is not Bc-open in general. Let $X = \{1,2,3\}$, $\tau = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$. Then $\{1,3\}, \{2,3\}$ is Bc-open set where as $\{1,3\} \cap \{2,3\} = \{3\}$ is not Bc-open set.

Remark (1.7)[2]:

The intersection of an b-open set and an open set is b-open set.

Proposition (1.8):

Let *X* be a topological space and $A, B \subset X$. If *A* is Bc-open set and *B* is an θ -open set, then $A \cap B$ is Bc-open set.

Proof:

Let A be a Bc-open set and B is an θ -open set, then A is bopen set and B is an open set since every θ -open is open. Then $A \cap B$ is b-open set by (Remark(1.7)). Now, let $x \in A \cap B$, $x \in A$ and $x \in B$, then there exists a closed set F such that $x \in F \subset A$, and there exists an open set E such that $x \in E \subset \overline{E} \subset B$. Therefore, $E \cap \overline{E}$ is closed since the intersection of closed sets is closed. Thus $x \in E \cap \overline{E} \subset A \cap B$. Then $A \cap B$ is Bc-open set.

Proposition(1.9)[5]:

Let X be a topological space and $A \subset X$. Then A is Bc-open set if and only if A is b-open set and it is a union of closed sets. That is $A = \bigcup F_{\alpha}$ where A is b-open set and F_{α} is closed sets for each α .

Proposition(1.10)[5]:

Let $\{A_{\alpha} : \alpha \in \Lambda\}$ be a collection of Bc-open sets in a topological space X. Then $\bigcup \{A_{\alpha} : \alpha \in \Lambda\}$ is Bc-open.

Lemma(1.11)[4]:

Let *X* be a topological space and $Y \subset X$. If *G* is an θ -open in *X*, then $G \cap Y$ is an θ -open in *Y*.

Proposition(1.12)[5]:

Let X be a topological space and $Y \subset X$. If G is an b-open in X and Y is an open in X, then $G \cap Y$ is b-open in Y.

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Proposition(1.13):

Let X be a topological space and $Y \subset X$. If G is an Bc-open in X and Y is an θ -open in X, then $G \cap Y$ is Bc-open in Y.

Proof:

Let $x \in G \cap Y$, $x \in G$ and $x \in Y$, Since G is a Bc-open set in X, then for each $x \in G \in BO(X)$, there exists F is closed set in X such that $x \in F \subset G$ and since Y is an θ -open in X, then there exists U is open set in X such that $x \in U \subset \overline{U} \subset Y$. Since G is Bc-open, then G is b-open and since G is an G-open, then G is an open by proposition (1.12). Therefore, $G \cap Y$ is b-open in G is closed set in G are closed set in G and G is closed set in G. Hence $G \cap Y$ is Bc-open in G.

Proposition(1.14):

Let X be a topological space and Y is an θ -open subset of X. If G is an Bc-open in Y, then G is Bc-open in X.

Proof:

Suppose that Y is an θ -open subset of X and $G \subset Y$, since G is a Bc-open set in Y, then for each $x \in G \in BO(Y)$, there exists F is closed set in Y such that $x \in F \subset G$. Let $G = Y \cap U$, $U \subset X$, and $F = E \cap Y$, $E \subset X$. Then $x \in E \subset X$. Hence G is Bc-open in X.

Lemma(1.15)[6]:

Let *X* and *Y* be a topological spaces and let $A \subset X$, $B \subset Y$ be two non empty subset:

- 1) If A is an open set in X and B is an open set in Y, then $A \times B$ is an open subset in $X \times Y$.
- 2) If A is a closed set in X and B is a closed set in Y, then $A \times B$ is a closed subset in $X \times Y$.
- 3) $\overline{(A \times B)} = \overline{A} \times \overline{B}$.

Theorem(1.16):

Let X and Y be a topological spaces and let $A \subset X, B \subset Y$ such that A is an θ -open set of X, B is an θ -open set of Y, then $A \times B$ is an θ -open subset of $X \times Y$.

Proof:

Let A be an θ -open set of X and B be an θ -open set of Y, then for each $x \in A$, there exists G open set in X such that $x \in G \subset \overline{G} \subset A$ and for each $y \in B$, there exists U open set in X such that $y \in U \subset \overline{U} \subset B$. By lemma(1.15)(1), then $G \times U$ is an open set in $X \times Y$. Since \overline{G} , \overline{U} is closed set, then $\overline{G} \times \overline{U}$ is a closed set in $X \times Y$ by lemma (1.15)(2). Since $\overline{G} \times \overline{U} \subset \overline{G} \times \overline{U}$ by lemma(1.15)(3), then $X \in G \times U \subset \overline{G} \times \overline{U} \subset A \times B$. Hence $X \in G \times B$ is an $X \in G \times B$.

Proposition(1.17)[8]:

Let X and Y be a topological spaces and let $A \subset X, B \subset Y$ such that A is a b-open set of X, B is an open set of Y, then $A \times B$ is a b-open subset of $X \times Y$.

Proposition(1.18):

Let X and Y be a topological spaces and let $A \subset X, B \subset Y$ such that A is a Bc-open set of X, B is an θ -open set of Y, then $A \times B$ is a Bc-open subset of $X \times Y$.

Proof:

Let A be a Bc-open set of X and B be an θ -open set of Y, then for each $x \in A \in BO(X)$, there exists F closed set in X such that $x \in F \subset A$ and for each $y \in B$, there exists U open set in Y such that $y \in U \subset \overline{U} \subset B$. Since A is a Bc-open in X and B is an θ -open in Y, then A is a b-open in X and B be an open in Y. Thus $A \times B$ is a b-open subset of $X \times Y$ by proposition(1.17), $x \in A$ and $y \in B$, then $(x,y) \in A \times B \in BO(X)$. Since $x \in F \subset A$ and $y \in U \subset \overline{U} \subset B$ such that F is closed set in X and \overline{U} is closed set in Y, then $F \times \overline{U}$ is closed set in $X \times Y$. Therefore, $(x,y) \in F \times \overline{U} \subset A \times B$. Hence $A \times B$ is a Bc-open subset in $X \times Y$.

Definition(1.19)[1]:

Let *X* be a topological space and $x \in X$. Then a subset *N* of *x* is said to be a θ -neighborhood of *x*, if there exists θ -open set *U* in *X* such that $x \in U \subset N$.

Definition(1.20)[5]:

Let X be a topological space and $A \subset X$. A point $x \in X$ is said to Bc-interior point of A, if there exist a Bc-open set U such that $x \in U \subset A$. The set of all Bc-interior points of A is called Bc-interior of A and is denoted by $A^{\circ Bc}$.

Theorem(1.21)[5]:

Let X be a topological space and $A, B \subseteq X$, then the following statements are true:

- 1) $A^{\circ Bc}$ is the union of all Bc-open set which are contained in A
- 2) $A^{\circ Bc}$ is Bc-open set in X.
- 3) $A^{\circ Bc} \subset A$.
- 4) A is Bc-open if and only if $A = A^{\circ Bc}$.
- $5) (A^{\circ Bc})^{\circ Bc} = A^{\circ Bc}.$
- 6) If $A \subset B$, then $A^{\circ Bc} \subset B^{\circ Bc}$.
- 7) $A^{\circ Bc} \cup B^{\circ Bc} \subset (A \cup B)^{\circ Bc}$.
- 8) $(A \cap B)^{\circ Bc} \subset A^{\circ Bc} \cap B^{\circ Bc}$.

Definition(1.1.22)[5]:

Let *X* be a topological space and $A \subset X$. The Bc-closure of *A* is defined by the intersection of all Bc-closed sets in *X* containing *A*, and is denoted by \bar{A}^{Bc} .

Theorem(1.23)[5]:

Let X be a topological space and $A, B \subset X$. Then the following statements are true:

- 1) \bar{A}^{Bc} is the intersection of all Bc-closed sets containing A.
- 2) \bar{A}^{Bc} is Bc-closed set in X.
- 3) $A \subset \bar{A}^{Bc}$.
- 4) A is Bc-closed set if and only if $A = \bar{A}^{Bc}$.
- 5) $\overline{(\bar{A}^{Bc})^{Bc}} = \bar{A}^{Bc}$.
- 6) If $A \subset B$. then $\bar{A}^{Bc} \subset \bar{B}^{Bc}$.
- 7) $\bar{A}^{Bc} \cup \bar{B}^{Bc} \subset \overline{(A \cup B)^{Bc}}$.
- 8) $\overline{(A \cap B)}^{Bc} \subset \overline{A}^{Bc} \cap \overline{B}^{Bc}$.

Proposition(1.24)[5]:

Let X be a topological space and $A \subset X$. Then $x \in \overline{A}^{Bc}$ if and only if $A \cap U \neq \phi$ for every Bc-open set U containing x.

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Definition(1.25)[5]:

Let X be a topological space and $A \subset X$. A point x is said to be Bc-limit point of A, if for each Bc-open set U containing x, $U \cap (A - \{x\}) \neq \phi$. The set of all Bc-limit points of A is called a Bc-derived set of A and is denoted by \hat{A}^{Bc} .

Proposition(1.26)[5]:

Let *X* be a topological space and $A \subset X$. Then $\bar{A}^{Bc} = A \cup \hat{A}^{Bc}$

Proposition(1.27):

Let X be a topological space and $A \subseteq X$, then \bar{A}^{Bc} is the smallest Bc-closed set containing A.

Proposition(1.28)[5]:

Let X be a topological space and $A \subset X$, then the following statements are true:

- 1) $(\bar{A}^{Bc})^c = (A^c)^{\circ Bc}$.
- 2) $(A^{\circ Bc})^c = \overline{(A^c)^{Bc}}$.
- 3) $\bar{A}^{Bc} = (A^{c \circ Bc})^c$.
- 4) $A^{\circ Bc} = \left(\overline{A^c}^{Bc}\right)^c$.

Definition(1.29):

Let X be a topological space and $A \subset X$, A is called θ -regular open set in X iff $A = \bar{A}^{\theta \circ \theta}$. The complement of θ -regular open set is called θ -regular closed.

Definition(1.30):

Let X be a topological space and $A \subset X$, A is called Bc-regular open set in X iff $A = \overline{A}^{Bc^{\circ Bc}}$. The complement of Bc-regular open set is called Bc-regular closed.

Remark(1.31):

Let *X* be a topological space and $A \subset X$, *A* is Bc-regular open set, then $\bar{A}^{Bc}{}^{\circ Bc}$ is Bc-regular open set.

Proof:

To prove $\bar{A}^{Bc}{}^{\circ Bc}$ is Bc-regular open we must prove that $\bar{A}^{Bc}{}^{\circ Bc} = \overline{\bar{A}^{Bc}{}^{\circ Bc}}{}^{Bc}{}^{\circ Bc}$, since $A \subset \bar{A}^{Bc}$, then $A^{\circ Bc} \subset \bar{A}^{Bc}{}^{\circ Bc}$ and since A is Bc-open set, hence $A \subset \bar{A}^{Bc}{}^{\circ Bc}$ $\bar{A}^{Bc}{}^{\circ Bc}$... (2) From (1) and (2) we get $\bar{A}^{Bc}{}^{\circ Bc}$ $\bar{A}^{Bc}{}^{\circ Bc}{}^{Bc}{}^{\circ Bc}$ is Bc-regular open.

2. Separation Axiom

Definition(2.1)[7]:

A space X is called $\theta T_2 - space$ iff for each $x \neq y$ in X there exist disjoint θ -open sets U, V such that $x \in U, y \in V$.

Definition(2.2):

A space *X* is called Bc-regular space iff for each *x* in *X* and *C* θ -closed set such that $x \notin C$, there exist disjoint Bc-open sets U, V such that $x \in U, C \subseteq V$.

Proposition(2.3):

A space X is Bc-regular space iff for every $x \in X$ and each θ -open set U in X such that $x \in U$ there exists an Bc-open set W such that $\in W \subseteq \overline{W}^{Bc} \subseteq U$.

Proof.

Let X be a Bc-regular space and $x \in X$, U is θ -open in X such that $x \in U$. Thus U^c is θ -closed set, $x \notin U^c$. Then there exist disjoint Bc-open set W, V such that $x \in W$, $U^c \subseteq V$. Hence $x \in W \subseteq \overline{W}^{Bc} \subseteq \overline{V^c}^{Bc} \subseteq V^c \subseteq U$. Conversely let F be an θ -closed set such that $x \notin F$. Then F^c is an θ -open set and $x \in F^c$. Thus there exist W is Bc-open set such that $x \in W \subseteq \overline{W}^{Bc} \subseteq F^c$. Then $x \in W$, $F \subseteq (\overline{W}^{Bc})^c$ and W, $(\overline{W}^{Bc})^c$ are disjoint Bc-open set. Hence X is Bc-regular space.

Definition(2.4):

A space X is called Bc*-regular space iff for each x in X and Bc-closed set C such that $x \notin C$, there exist disjoint sets U, V such that U is an θ -open, V is a Bc-open and $x \in U, C \subseteq V$.

Proposition(2.5):

A space X is Bc*-regular space iff for every $x \in X$ and each Bc-open set U in X such that $x \in U$ there exists an θ -open set W such that $x \in W \subseteq \overline{W}^{Bc} \subseteq U$.

Proof:

Let X be a Bc*-regular space and $x \in X$, U is Bc-open in X such that $x \in U$. Thus U^c is Bc-closed set, $x \notin U^c$. Then there exist disjoint set W, V such that W is an θ -open, V is a Bc-open and $x \in W$, $U^c \subseteq V$. Hence $x \in W \subseteq \overline{W}^{Bc} \subseteq \overline{V^c}^{Bc} \subseteq V^c \subseteq U$. Conversely, let F be an Bc-closed set such that $x \notin F$. Then F^c is an Bc-open set and $x \in F^c$. Thus there exist W is θ -open set such that $x \in W \subseteq \overline{W}^{Bc} \subseteq F^c$. Then $x \in W$, $F \subseteq (\overline{W}^{Bc})^c$ and $(\overline{W}^{Bc})^c$ is Bc-open set, $W \cap (\overline{W}^{Bc})^c = \phi$. Hence X is Bc*-regular space.

Definition(2.7):

A space X is called almost Bc-regular space iff for each x in X and C is θ -regular closed set such that $x \notin C$, there exist disjoint Bc-open sets U, V such that $x \in U$, $C \subseteq V$.

Definition(2.8):

A space X is called almost Bc*-regular space iff for each x in X and C is Bc-regular closed set such that $x \notin C$, there exist disjoint sets U, V such that U is θ -open , V is Bc-open and $x \in U, C \subseteq V$.

Proposition(2.9):

A space X is almost Bc-regular space iff for every $x \in X$ and each θ -regular open set U in X such that $x \in U$ there exists an Bc-open set W such that $x \in W \subseteq \overline{W}^{Bc} \subseteq U$.

Proof:

Let X be a almost Bc-regular space and $x \in X$, U is θ -regular open set in X such that $x \in U$. Thus U^c is θ -regular closed set, $x \notin U^c$. Then there exist disjoint Bc-open set W, V such that $x \in W, U^c \subseteq V$. Hence $x \in W \subseteq \overline{W}^{Bc} \subseteq \overline{V^c}^{Bc} \subseteq V^c \subseteq U$. Conversely, Let F be an θ -regular closed set such that $x \notin F$. Then F^c is an θ -regular-open set and

 $x \in F^c$. Thus there exist W is Bc-open set such that $x \in W \subseteq \overline{W}^{Bc} \subseteq F^c$. Then $x \in W$, $F \subseteq (\overline{W}^{Bc})^c$ and W, $(\overline{W}^{Bc})^c$ are disjoint Bc-open set. Hence X is almost Bc-regular space.

Proposition(2.10):

A space X is almost Bc*-regular space iff for every $x \in X$ and each Bc-regular open set U in X such that $x \in U$ there exists an θ -open set W such that $x \in W \subseteq \overline{W}^{Bc} \subseteq U$.

Proof:

Let X be a almost Bc*-regular space and $x \in X$, U is Bc-regular open in X such that $x \in U$. Thus U^c is Bc-regular closed set, $x \notin U^c$. Then there exist disjoint set W, V such that W is an θ -open, V is a Bc-open and $x \in W, U^c \subseteq V$. Hence $x \in W \subseteq \overline{W}^{Bc} \subseteq \overline{V^c}^{Bc} \subseteq V^c \subseteq U$. Conversely, let F be an Bc-regular closed set such that $x \notin F$. Then F^c is an Bc-regular open set and $x \in F^c$. Thus there exist W is θ -open set such that $x \in W \subseteq \overline{W}^{Bc} \subseteq F^c$. Then $x \in W, F \subseteq (\overline{W}^{Bc})^c$ and $(\overline{W}^{Bc})^c$ is Bc-open set, $W \cap (\overline{W}^{Bc})^c = \phi$. Hence X is almost Bc*-regular space.

Definition(2.11):

A space X is called Bc-normal space iff for every disjoint θ -closed set F_1 , F_2 there exist disjoint Bc-open sets V_1 , V_2 such that $F_1 \subseteq V_1$, $F_2 \subseteq V_2$.

Proposition(2.12):

A space X is called Bc-normal space iff for every θ -closed set $F \subseteq X$ and each θ -open set U in X such that $F \subseteq U$ there exists an Bc-open set W such that $F \subseteq W \subseteq \overline{W}^{Bc} \subseteq U$.

Proof:

Let X be a Bc-normal space and let F is an θ -closed set in X, U is an θ -open set such that $F \subseteq U$. Thus U^c is θ -closed set U^c , F are disjoint θ -open set, then there exists Bc-open sets W, V such that $F \subseteq W$, $U^c \subseteq V$, $W \cap V = \phi$. Hence $F \subseteq W \subseteq \overline{W}^{Bc} \subseteq \overline{V^c}^{Bc} = V^c \subseteq U$. Conversely, let F_1 , F_2 be a disjoint θ -closed set. Then F_1^c is an θ -open set and $F_1 \subseteq F_2^c$. Thus there exist W is Bc-open set such that $F_1 \subseteq W \subseteq \overline{W}^{Bc} \subseteq F_2^c$. Then $F_1 \subseteq W$, $F_2 \subseteq (\overline{W}^{Bc})^c$ and W, $(\overline{W}^{Bc})^c$ are disjoint Bc-open set. Hence X is Bc-normal space.

Proposition(2.13):

If X is both Bc-normal and $\theta T_2 - space$, then X is Bc-regular.

Proof:

Let $x \in X$ and U be an θ -open set such that $x \in U$. Then $\{x\}$ is θ -closed subset of X. Thus there exists a Bc-open set W such that $\{x\} \subseteq W \subseteq \overline{W}^{Bc} \subseteq U$. By proposition (2.12). So that $x \in W \subseteq \overline{W}^{Bc} \subseteq U$ and hence by proposition (2.3) X is Bc-regular space.

3.Bc-paracompact Spaces

Definition(3.1)[9]:

A covering of a topological space X is the family $\{A_{\alpha} : \alpha \in \Lambda\}$ of subsets such that $\bigcup_{\alpha \in \Lambda} A_{\alpha} = X$. If each A_{α} is open, then $\{A_{\alpha} : \alpha \in \Lambda\}$ is called an open covering, and if each set A_{α} is closed, then $\{A_{\alpha} : \alpha \in \Lambda\}$ is called a closed covering. A covering $\{B_{\gamma} : \gamma \in \Gamma\}$ is said to be refinement of a covering

 $\{A_{\alpha}: \alpha \in \Lambda\}$ if for each γ in Γ there exists some α in Λ such that $B_{\gamma} \subset A_{\alpha}$.

Definition(3.2):

The family $\{B_{\alpha}\}_{{\alpha} \in \Lambda}$ of a subset of a space X is said to be an θ -locally finite if for each $x \in X$ there exist an θ -neighborhood N_x of x such that the set $\{\alpha \in \Lambda: N_x \cap B_\alpha \neq \phi\}$ is finite.

Proposition(3.3):

If $\{B_{\alpha}\}_{{\alpha}\in\Lambda}$ is an θ -locally finite family of subset of a space X, there exist a family $\{C_{\alpha}\}_{{\alpha}\in\Lambda}$, $C_{\alpha}\subset B_{\alpha}$ for each α , then $\{C_{\alpha}\}_{{\alpha}\in\Lambda}$ is an θ -locally finite.

Proof

Let $\{B_{\alpha}\}_{\alpha\in\Lambda}$ is an θ -locally finite, for each $x\in X$, then there exist G_x θ -open set containing x such that $G_x\cap B_{\alpha i}\neq \phi, i=1,\dots,n$, hence $G_x\cap B_{\alpha j}=\phi, j=n+1,n+2,\dots$. Since G_x is an θ -open set, then G_x is Bc-open set, and hence G_x^c is Bc-closed set. Therefore, for $B_{\alpha i}\subset G_x^c$, $i=n+1,n+2,\dots$. This implies $G_x\cap C_{\alpha i}\subset B_{\alpha i}\subset G_x^c$, $i=n+1,n+2,\dots$. This implies $G_x\cap C_{\alpha i}=\phi, i=n+1,n+2,\dots$. Hence $\{G_x\cap C_{\alpha i}\neq \phi, j=1,\dots,n\}$. Therefore, $\{C_\alpha\}_{\alpha\in\Lambda}$ is an θ -locally finite.

Proposition(3.4):

Let (X, τ) be a topological space and $A \subset X$. If A_{α} is an θ -locally finite, then $\overline{A_{\alpha}}^{Bc}$ is an θ -locally finite.

Proof:

Let $\{A_{\alpha}\}_{\alpha\in\Lambda}$ is an θ -locally finite, for each $x\in X$, then there exist θ -open set G_x containing x such that $G_x\cap A_{\alpha i}\neq \phi, i=1,\dots,n$, hence $G_x\cap A_{\alpha j}=\phi, j=n+1,n+2,\dots$. Since G_x is an θ -open set, then G_x is Bc-open set, and hence G_x^c is Bc-closed set. Therefore, $A_{\alpha i}\subset G_x^c$, $i=n+1,n+2,\dots$. Hence $\overline{A_{\alpha i}}^{Bc}\subset \overline{G_x^{c}}^{Bc}=G_x^c$, $i=n+1,n+2,\dots$, then $\overline{A_{\alpha i}}^{Bc}\subset G_x^c$, $i=n+1,n+2,\dots$. This implies $G_x\cap \overline{A_{\alpha i}}^{Bc}=\phi$, $i=n+1,n+2,\dots$. Hence $\{G_x\cap \overline{A_{\alpha i}}^{Bc}\neq \phi$, $i=1,\dots,n\}$. Therefore, $\overline{A_{\alpha}}^{Bc}$ is an θ -locally finite.

Proposition(3.5):

Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ is an θ -locally finite Bc-closed family of a space X then $\bigcup_{\alpha \in \Lambda} \overline{A_{\alpha}}^{Bc} = \overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}^{Bc}$.

Proof:

Since $A_{\alpha} \subset \bigcup_{\alpha \in \Lambda} A_{\alpha}$, then $\overline{A_{\alpha}}^{Bc} \subset \overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}^{Bc}$ by theorem(1.23) and hence $\bigcup_{\alpha \in \Lambda} \overline{A_{\alpha}}^{Bc} \subset \overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}^{Bc}$. To prove that $\overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}^{Bc} \subset \bigcup_{\alpha \in \Lambda} \overline{A_{\alpha}}^{Bc}$. Let $x \in \overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}^{Bc}$ such that $x \notin \bigcup_{\alpha \in \Lambda} \overline{A_{\alpha}}^{Bc}$, then $x \notin \overline{A_{\alpha}}^{Bc}$, for each $\alpha \in \Lambda$. Since $\{A_{\alpha}\}_{\alpha \in \Lambda}$ is an θ -locally finite, then there exists an θ -open set G_{x} containing x such that $G_{x} \cap A_{\alpha} \neq \phi$ for only a finite member of α say $\alpha_{1}, \ldots, \alpha_{n}$. Since $x \notin \overline{A_{\alpha}}^{Bc}$ for each $\epsilon \in \Lambda$, then $\epsilon \notin A_{\alpha}$ and $\epsilon \notin A_{\alpha}$ for each $\epsilon \in \Lambda$ by proposition(1.27). Thus there exists an Bc-open set $\epsilon \in \Lambda$ which contain $\epsilon \in \Lambda$ such that $\epsilon \in \Lambda$ is a Bc-open and since $\epsilon \in \Lambda$ in $\epsilon \in \Lambda$ for each $\epsilon \in \Lambda$ such that $\epsilon \in \Lambda$ is a Bc-open and since $\epsilon \in \Lambda$ such that $\epsilon \in \Lambda$ is a Bc-open and since $\epsilon \in \Lambda$ such that $\epsilon \in \Lambda$ s

then $V \cap A_{\alpha} = \phi$, for $\alpha \in \Lambda$. Now, we have $\bigcap (\bigcup_{\alpha \in \Lambda} A_{\alpha}) = \phi$, so that since $x \in V$, then $x \notin \overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}^{Bc}$, by proposition(1.24) which is a contradiction. Thus $\in \overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}^{Bc}$, so that $\overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}^{Bc} \subset \bigcup_{\alpha \in \Lambda} \overline{A_{\alpha}}^{Bc}$, then $\overline{\bigcup_{\alpha \in \Lambda} A_{\alpha}}^{Bc} = \bigcup_{\alpha \in \Lambda} \overline{A_{\alpha}}^{Bc}$.

Proposition (3.6):

The union of member of θ -locally finite Bc-closed sets is Bc-closed. **Proof:**

Let $\{A_{\alpha}\}_{\alpha\in\Lambda}$ be a family of θ -locally finite Bc-closed sets. Then $\overline{\bigcup_{\alpha\in\Lambda}A_{\alpha}}^{Bc}=\bigcup_{\alpha\in\Lambda}\overline{A_{\alpha}}^{Bc}=\bigcup_{\alpha\in\Lambda}A_{\alpha}$, by theorem (3.4) and hence $\bigcup_{\alpha\in\Lambda}A_{\alpha}$ is Bc-closed set by theorem (1.23).

Theorem (3.7):

Let $\{A_{\alpha}\}_{\alpha\in\Lambda}$ be a family of Bc-open subsets of a space X and let $\{B_{\gamma}\}_{\gamma\in\Gamma}$ be an θ -locally finite Bc-closed covering of X such that for each $\gamma\in\Gamma$ the set $\{\alpha\in\Lambda:B_{\gamma}\cap A_{\alpha}\neq\phi\}$ is a finite. Then there exists θ -locally finite family $\{G_{\alpha}\}_{\alpha\in\Lambda}$ of Bc-open set of X such that $A_{\alpha}\subset G_{\alpha}$ for each $\alpha\in\Lambda$.

Proof:

For each α , let $G_{\alpha} = \left(\left\{F_{\gamma} - B_{\gamma} \cap A_{\alpha} = \phi\right\}\right)^{c}$. Clearly $A_{\alpha} \subset G_{\alpha}$ and since $\left\{B_{\gamma}\right\}_{\gamma \in \Gamma}$ is an θ -locally finite, it follow that G_{α} is Bc-open by proposition (3.6). Let x be a point of X, there exists an θ -neighborhood N of x, and a finite subset k of Γ such that $N \cap F_{\gamma} = \phi$ if $\gamma \notin k$. Hence $\subset \bigcup_{\gamma \in k} F_{\gamma}$. Now $F_{\gamma} \cap G_{\alpha} \neq \phi$ iff $F_{\gamma} \cap A_{\alpha} \neq \phi$. For each $\alpha \in k$ the set $\{\alpha \in \Lambda: F_{\gamma} \cap A_{\alpha} \neq \phi\}$ is a finite. Hence $\{\alpha \in \Lambda: N \cap G_{\alpha} \neq \phi\}$ is a finite

Lemma(3.8):

If every θ -open cover of a topological space X has an θ -locally finite Bc-closed refinement, then every θ -open cover of X has an θ -locally finite Bc-open refinement.

Proof:

Let \mathcal{U} be θ -open cover of X, and $\mathcal{A} = \{A_s : s \in S\}$ an θ -locally finite of \mathcal{U} and for each $x \in X$ choose an θ -neighborhood V_x of x which meets only finitely many members of \mathcal{A} . Let \mathcal{F} be an θ -locally finite Bc-closed refinement of the θ -open cover $\{V_x : x \in X\}$ and for each $s \in S$, let $W_s = (\{F \in \mathcal{F} : F \cap A_s\})^c$, then W_s is a Bc-open and contain A_s , for each $s \in S$ and $F \in \mathcal{F}$, we have $W_s \cap F \neq \phi$ iff $A_s \cap F \neq \phi$. For each $s \in S$ take a $U_s \in \mathcal{U}$ such that $A_s \in U_s$ and let $V_s = W_s \cap U_s$. The family $\{V_s\}_{s \in S}$ is a Bc-open refinement of \mathcal{U} . Since for each $x \in X$ has an θ -neighborhood such that meets only finitely many members of \mathcal{F} and every members of \mathcal{F} meets only finitely many members of \mathcal{A} . Therefore, $\{V_s\}_{s \in S}$ is an θ -locally finite Bc-open refinement of \mathcal{U}

Theorem(3.9):

If every finite θ -open covering of a space X has an θ -locally finite Bc- closed refinement, then X is Bc-normal space.

Proof:

Let X be a topological space such that each finite θ -open covering of X which has an θ -locally finite Bc-closed refinement and let A, B be a disjoint θ -closed set of X. The θ -

open covering $\{A^c, B^c\}$ of X has an θ -locally finite Bc-closed refinement W. Let E be the union of the members of W disjoint from A and let S be the union of the members of W disjoint from B. Then E and S are Bc-closed sets and $E \cup S = X$. Thus if $G = (E)^c$ and $U = (S)^c$, then G, U are disjoint Bc-open sets such that $A \subseteq G$, $B \subseteq U$. Hence X is Bc-normal space.

Definition (3.10):

A topological space X is said to be Bc-paracompact if every θ -open covering of X has an θ -locally finite Bc-open refinement.

Proposition (3.11):

Let X be a Bc paracompact space, let A be an θ -open subset of X and let B be an θ -closed set of X which is disjoint from A. If for every $x \in B$ there exist θ -open sets U_x , V_x such that $A \subset U_x$, $x \in V_x$ and $U_x \cap V_x = \phi$, then also there exist Bc-open sets U, V such that $A \subset U$, $x \in V$ and $U \cap V = \phi$.

Proof:

The family $\{V_x : x \in B\} \cup \{(B)^c\}$ is an θ -open cover of Bcparacompact , so that it has an θ -locally finite Bc-open refinement $\{W_\gamma\}_{\gamma \in \Gamma}$. Let $\Gamma_1 = \{\gamma \in \Gamma : W_\gamma \subset V_x \text{ for some } x \in B\}$. If $\epsilon \in \Gamma_1$, then $U_x \cap W_\gamma = \phi$ for some x by proposition (3.4) , then $\overline{W_\gamma}^{Bc}$ is an θ -locally finite Bc-closed. Therefore, $A \cap \overline{W_\gamma}^{Bc} = \phi$. Now, let $U = \left(\bigcup_{\gamma \in \Gamma_1} \overline{W_\gamma}^{Bc}\right)^c$ and $V = \bigcup_{\gamma \in \Gamma_1} W_\gamma$. Then $A \subset U$, $B \subset V$ and $U \cap V = \phi$.

Proposition(3.12):

If X is a Bc-paracompact θT_2 —space , then X is Bc-regular.

Proof:

Let $x \in X$ and F be an θ -closed set in X such that $x \notin F$. Then for each $y \in F$ there exists θ -open sets U_y , V_y such that $x \in U_y$, $y \in V_y$. It follow from proposition(3.11) there exists Bc-open sets U and V such that $x \in U$, $F \subset V$ and $U \cap V = \phi$. Thus X is Bc-regular.

Proposition(3.13):

Let X be a topological space . If each θ -open covering of X has an θ -locally finite Bc-closed refinement, then X is Bc-paracompact Bc-normal Space.

Proof:

Let $\mathcal U$ be an θ -open covering of X and let $\{A_\alpha\}_{\alpha\in\Lambda}$ be an θ -locally finite Bc-closed refinement of . Since $\{A_\alpha\}_{\alpha\in\Lambda}$ is an θ -locally finite, for each point x of X has an θ -neighborhood G_x such that $\{\alpha\in\Lambda\colon G_x\cap A_\alpha\neq \phi\}$ is a finite. If $\{B_\gamma\}_{\gamma\in\Gamma}$ is an θ -locally finite Bc-closed refinement of the θ -open covering $\{G_x\}_{x\in X}$ of , then for each $\gamma\in\Gamma$ the set $\{\alpha\in\Lambda\colon B_\gamma\cap A_\alpha\neq \phi\}$ is a finite . It follows from theorem (3.9), that there exist an θ -locally finite family $\{V_\alpha\}_{\alpha\in\Lambda}$ of Bc-open sets, such that $A_\alpha\subseteq V_\alpha$ for each . Let U_α be a member of $\mathcal U$ such that $A_\alpha\subseteq U_\alpha$, for each $\alpha\in\Lambda$.

Then $(V_{\alpha} \cap U_{\alpha})_{\alpha \in \Lambda}$ is an θ -locally finite Bc-open refinement of . Thus X is Bc-paracompact, so that X is Bc-normal space by theorem(3.9).

Theorem(3.14):

Bc*-regular space is Bc-paracompact Bc-normal if and only if each θ -open covering has an θ -locally finite Bc-closed refinement.

Proof:

Suppose that X is Bc-paracompact Bc-normal space and let $\{A_{\alpha}\}_{\alpha\in\Lambda}$ be an θ - open covering of . Since X is Bc*-regular, there exists an θ -open set V_x such that $x\in V_x\subseteq \overline{V_x}^{Bc}\subseteq A_\alpha$ for some . The family $\{A_x\colon x\in X\}$ is an θ -open cover of X and since X is Bc-paracompact, then there exists an θ -locally finite Bc-open refinement $\mathcal{W}=\{W_x\colon x\in X\}$ of $\{A_x\colon x\in X\}$. Hence $\overline{W_x}^{Bc}\subset \overline{V_x}^{Bc}\subset A_\alpha$, then $\{\overline{W_x}^{Bc}\colon x\in X\}$ is an θ -locally finite Bc-open refinement of $\{A_\alpha\}_{\alpha\in\Lambda}$. Conversely, from theorem(3.13).

Theorem(3.15):

Let X be any Bc*-regular space, the following condition are equivalent:

- 1) *X* is Bc-paracompact.
- 2) Every θ -open cover of X has an θ -locally finite refinement.
- 3) Every θ -open cover of X has a Bc-closed θ -locally finite refinement.

Proof:

 $1\rightarrow 2$

Let X be a Bc-paracompact , then every θ -open cover of X has an θ -locally finite refinement.

 $2 \rightarrow 3$

Let \mathcal{U} be an θ -open covering of X. Since X is Bc*-regular, there exists θ -open set V_x such that $\in V_x \subseteq \overline{V_x}^{BC} \subseteq U_x$. The family $\mathcal{V} = \{V_x \colon x \in X\}$ is an θ -open cover of X, by (2) \mathcal{V} has an θ -locally finite refinement. Hence $\{\overline{V_x}^{BC} \colon x \in X\}$ is an θ -locally finite Bc-open refinement of \mathcal{U} . $3 \rightarrow 1$

By lemma(3.14).

Lemma(3.16):

Let X be any Bc*-regular Bc-paracompact space. Then every Bc- open cover $\{G_s : s \in S\}$ has an θ -locally finite Bc-open refinement $\{U_s : s \in S\}$ such that $\overline{U_s}^{Bc} \subseteq G_s$ for each $\in S$.

Proof:

Let $\{G_s\colon s\in S\}$ be any Bc-open cover of . For $x\in X$, $x\in G_s$, for some $s\in S$ and since X is Bc*-regular , hence by proposition(1.36), there exists an θ -open cover $\mathcal{W}=\{W_x\colon x\in X\}$ and $\overline{W_x}^{Bc}\subseteq G_s$. Since X is Bc-paracompact , then \mathcal{W} has an θ -locally finite Bc-open refinement $\{A_h\colon h\in H\}$ for each $h\in H$ choose $s(h)\in S$ such that $\overline{A_h}^{Bc}\subseteq G_{s(h)}$, and let $U_s=\bigcup_{s(h)=s}A_h$. Since $\bigcup_{s(h)=s}A_h\subseteq \overline{\bigcup_{s(h)=s}A_h}^{Bc}=\bigcup_{s(h)=s}\overline{A_h}^{Bc}\subseteq G_s$, then $\{U_s\colon s\in S\}$ is an θ -locally finite Bc-open refinement of $\{G_s\colon s\in S\}$ such that $\overline{U_s}^{Bc}\subseteq G_s$ for each $s\in S$.

Definition(3.17):

Let *X* be a topological space and $\subseteq X$. *A* is said to be Bcdence set if $\bar{A}^{Bc} = X$.

Definition(3.18):

A topological space *X* is said to be Bc-Lindelof if every Bc-open cover of *X* has a countable sub cover.

Theorem(3.19):

Let X be any Bc*-regular Bc-paracompact space such that there exists an θ -open Bc-dense Bc-Lindelof set , then X is a Bc-Lindelof .

Proof:

Let $\mathcal{U} = \{U_s : s \in S\}$ be any Bc-open cover of X. For each $x \in X$, $x \in U_s$, for some $s \in S$. By lemma (3.16), there exists a Bc-open θ -locally finite refinement $\{V_s : s \in S\}$ of \mathcal{U} such that $\overline{V_s}^{Bc} \subseteq U_s$, for each $s \in S$. Then $\{V_s \cap A : s \in S\}$ is Bc-open cover of A, by proposition(1.13). Since A is Bc-Lindelof, there exists a countable set $S_o \subset S$ such that $A = \bigcup \{V_s \cap A : s \in S_o\}$. So $X = \overline{A}^{Bc} = \overline{\bigcup_{s \in S_o} V_s \cap A}^{Bc} = \bigcup_{s \in S_o} \overline{V_s \cap A}^{Bc} \subset \bigcup_{s \in S_o} \overline{V_s}^{Bc} \subset \bigcup_{s \in S_o} U_s$, hence X is Bc-Lindelof.

Lemma(3.20):

If \mathcal{U} is an θ -open covering of a topological space product $X \times Y$ of a Bc-paracompact space X and an θ -compact space , then U has a refinement of the form $\{V_{\alpha} \times G_{i\alpha} : i = 1, ..., n_{\alpha}\}$. Where $\{V_{\alpha} : \alpha \in \Lambda\}$ is an θ -locally finite Bc-open covering of X, and for each α , $\{G_{i\alpha} : i = 1, ..., n_{\alpha}\}$ is a finite θ -open covering of Y.

Proof:

Let x be a point of . Since Y is an θ -compact there exists an θ -open neighborhood W_x of x and a finite θ -open covering \mathcal{G}_x of Y such that $W_x \times G$ is contained in some member of \mathcal{U} if $G \in \mathcal{G}_x$. Let $\{V_\alpha \colon \alpha \in \Lambda\}$ be an θ -locally finite Bc-open refinement of open covering $\{W_x \colon x \in X\}$ of the Bc-paracompact space X. For α in Λ choose x in X such that $V_\alpha \subset W_x$ and let $\mathcal{G}_x = \{G_{i\alpha} \colon i = 1, ..., n_\alpha\}$. Then $\{V_\alpha \times G_{i\alpha}\}$ is a Bc-open refinement of \mathcal{U} .

Proposition(3.21):

The product of a Bc-paracompact space and an θ -compact space is a Bc-paracompact space.

Proof:

Let X be a Bc-paracompact space and Y be an θ -compact space and let \mathcal{U} be an θ -open covering of the topological product $X \times Y$. Then by lemma(3.20) \mathcal{U} has a Bc-open refinement of the form $\{V_{\alpha} \times G_{i\alpha} : i = 1, ..., n_{\alpha}\}$, where $\{V_{\alpha} : \alpha \in \Lambda\}$ is an θ -locally finite Bc-open refinement and $\{G_{i\alpha} : i = 1, ..., n_{\alpha}\}$ is a finite θ -open covering of Y for $\alpha \in \Lambda$. Therefore, $X \times Y$ is a Bc-paracompact space.

Definition (3.22):

A space X is said to be nearly Bc-paracompact space if each θ -regular open covering of X has an θ -locally finite Bc-open refinement.

Lemma(3.23):

Let X be any almost Bc*-regular nearly Bc-paracompact space. Then every Bc-regular open cover $\{G_s: s \in S\}$ has an θ -locally finite Bc-regular open refinement $\{V_s: s \in S\}$ such that $\overline{V_s}^{Bc} \subseteq G_s$ for each $\in S$.

Proof:

Let $\{G_s\colon s\in S\}$ be any Bc-regular open cover of X. For $x\in X, x\in G_s$, for some $s\in S$ and since X is almost Bc*-regular, hence by proposition(2.10), there exists an θ -regular open cover $\mathcal{W}=\{W_x\colon x\in X\}$ and $\overline{W_x}^{BC}\subseteq G_s$. Since X is nearly Bc-paracompact, then \mathcal{W} has an θ -locally finite Bc-open refinement $\{A_h\colon h\in H\}$ for each $h\in H$ choose $s(h)\in S$ such that $\overline{A_h}^{BC}\subseteq G_{s(h)}$, and let $U_s=\bigcup_{s(h)=s}A_h$. Since $\bigcup_{s(h)=s}A_h\subset \overline{\bigcup_{s(h)=s}A_h}^{BC}\subseteq G_s$, then $U_s\subset \overline{\bigcup_s}^{BC}\subset G_s$, hence $U_s\subset \overline{\bigcup_s}^{BC}\subset G_s$. Let $V_s=\overline{\bigcup_s}^{BC}\subset G_s$, then $\{V_s\colon s\in S\}$ is an θ -locally finite Bc-regular open refinement of $\{G_s\colon s\in S\}$ such that $\overline{V_s}^{BC}\subseteq G_s$ for each $s\in S$.

Theorem (3.24):

For any space, the following are equivalent:

- 1) X is nearly Bc-paracompact.
- 2) Every θ -regular open cover of X has a Bc-regular open θ -locally finite refinement.
- 3) Every θ -regular open cover of X has a Bc-regular closed θ -locally finite refinement.

Proof:

 $1\rightarrow 2$

Let \mathcal{U} be any θ -regular open cover of X, then \mathcal{U} has an θ -locally finite Bc-open refinement \mathcal{V} . Consider the family $\mathcal{W} = \left\{ \overline{\mathcal{V}}^{Bc^{\circ Bc}} \colon \mathcal{V} \in \mathcal{V} \right\}$ is an θ -locally finite Bc-regular open refinement of \mathcal{U} .

 $2\rightarrow 3$

It is clear since every Bc-regular open set is Bc-regular closed set.

 $3\rightarrow 1$

From lemma(3.8).

References

- [1] M. Y. Abid, "On the θ-g-continuity* in topological spaces". Journal of Kerbala University, Vol. 10, No. 1 Sientific. (2012).
- [2] A. AL-Omari and T. Noiri, "Characterizations of nearly Lindelof spaces", Jordon Journal of Mathematics and Statistics (JJMS) 3(2), 81-92, (2010).
- [3] D. Andrijevic, On b-open sets, Math. Vesnik, 59-64, 48(1996).
- [4] C. K. Basu, M. K. GH SH and S. S. Mandal, "A Generalization of H-closed spaces", Tamkangj Urnal F Mathematics, Vol. 39, No. 2, Summer 2008, pp. 143-153.
- [5] H. Z. Ibrahim, "Bc-open sets in topological spaces", Advances in pure Math., 3, 34-40, (2013).
- [6] O. A. Ivanov, N. Yu. Netsvetaev and V. M. Kharlamov, "Elementary Topology Problem Textbook", American Mathematical Society, 2008, 400 pages. ISBN 978-0-8218-4506-6.

- [7] J. K. Kohli and A. K. Das, "A class of spaces containing all generalized absolutely closed(almost compact) spaces", Applied General Topology, Universidad Politécnica de Valencia, Vol. 7, No. 2,2006, pp. 233-244.
- [8] A. S. Majid, "On some topological spaces by using bopen set", M. S. C. Thesis University of AL-Qadissiya, College of Mathematics and Computer science, 2011.
- [9] A. P.Pears, " On Dimension Theory of General Spaces", Cambridge University press, 1975.
- [10] N. V. Velicko, H-closed topological spaces, American Mathematical Society, Vol. 78, No. 2, pp. 103-118, (1968).