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Abstract: In this paper, we introduce a new class of open sets, called Bc-open sets, it is denoted and studied. Also, we have studied of 
definition Bc-paracompact spaces and nearly Bc-paracompact spaces and have provide some properties of this concepts.  
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1.Introduction 
 
In [5] H. Z. Ibrahim introduced the concept of Bc-open set in 
topological spaces. This paper consist of two sections. In 
section one, we give similar definition by using of Bc-open 
sets and also we proof some properties about it. In section 
two we obtain new a characterization and preserving 
theorems of Bc-paracompact spaces, nearly Bc-paracompact 
spaces and the product of space � × � where � is Bc-
paracompact space and � is θ-compact space.  
 
Definition(1.1)[3]: 
Let � be a topological space and � ⊂ �. Then � is called b-
open set in � if � ⊆ �∘���⋃�

∘
. The family of all b-open subset 

of a topological space (�, �) is denoted by ��(�, �) or 
(Briefly ��(�)). 
 
Definition(1.2)[5]: 
Let � be a topological space and � ⊂ �. Then � is called Bc-
open set in � if for each � ∈ � ∈ ��(�, �), there exists a 
closed set � such that � ∈ � ⊂ �. The family of all Bc-open 
subset of a topological space (�, �) is denoted by ���(�, �) 
or (Briefly ���(�)), � is Bc-closed set if �� is Bc-open set. 
The family of all Bc-closed subset of a topological space 
(�, �) is denoted by ���(�, �) or (Briefly ���(�)). 
 
Remark(1.3):  
It is clear from the definition that every Bc-open set is b-
open, but the converse is not true in general as the following 
example: 
 
Let � = �1,2,3�, � = ��,�, �1�, �2�, �1,2��. Then the closed 
set are: �,�, �2,3�, �1,3�, �3�. Hence 
��(�) = ��,�, �1�, �2�, �1,2�, �1,3�, �2,3�� and ���(�) =
��,�, �1,3�, �2,3��. Then �1� is b-open but �1� is not Bc-
open. 
 
Definition (1.4)[10]: 
1) Let � be a topological space and � ⊂ �. Then � is called 

θ-open set in � if for each � ∈ �, there exists an open set 
� such that � ∈ � ⊂ �̅ ⊂ �. The family of all θ-open 
subset of a topological space (�, �) is denoted by 
θ�(�, �) or (Briefly θ�(�)). 

2) Let � be a topological space and � ⊂ �. A point � ∈ � is 
said to θ-interior point of �, if there exist an θ-open set � 
such that � ∈ � ⊂ �. The set of all θ-interior points of � 
is called θ-interior of � and is denoted by �∘θ.  

3) Let � be a topological space and � ⊂ �. The θ-closure 
of � is defined by the intersection of all Bc-closed sets 
in � containing �, and is denoted by �̅θ.  

 
Remark (1.5)[5]: 
1) Every θ-open is Bc-open. 
2) Every θ-closed is Bc-closed. 
 
Example (1.6): 
The intersection of two Bc-open sets is not Bc-open in 
general. Let � = �1,2,3�, � = ��,�, �1�, �2�, �1,2��. Then 
�1,3�, �2,3� is Bc-open set where as �1,3�⋂�2,3� = �3� is 
not Bc-open set. 
 
Remark (1.7)[2]: 
The intersection of an b-open set and an open set is b-open 
set. 
 
Proposition (1.8): 
Let � be a topological space and �,� ⊂ �. If � is Bc-open 
set and � is an θ-open set , then �⋂� is Bc-open set. 
 
Proof: 
 Let � be a Bc-open set and � is an θ-open set, then � is b-
open set and � is an open set since every θ-open is open. 
Then �⋂� is b-open set by (Remark(1.7)). Now, let 
� ∈ �⋂�, � ∈ � and � ∈ �, then there exists a closed set � 
such that � ∈ � ⊂ �, and there exists an open set � such 
that � ∈ � ⊂ �� ⊂ �. Therefore, �⋂�� is closed since the 
intersection of closed sets is closed. Thus � ∈ �⋂�� ⊂
�⋂� .Then �⋂� is Bc-open set. 
 
Proposition(1.9)[5]: 
Let � be a topological space and � ⊂ �. Then � is Bc-open 
set if and only if � is b-open set and it is a union of closed 
sets. That is � = ⋃�� where � is b-open set and �� is 
closed sets for each �. 
 
Proposition(1.10)[5]: 
Let ���:� ∈ Λ� be a collection of Bc-open sets in a 
topological space �. Then ⋃���:� ∈ Λ� is Bc-open. 
 
Lemma(1.11)[4]: 
Let � be a topological space and � ⊂ �. If � is an θ-open 
in �, then �⋂� is an θ-open in �. 
 
Proposition(1.12)[5]: 
Let � be a topological space and � ⊂ �. If � is an b-open 
in � and � is an open in �, then �⋂� is b-open in �. 
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Proposition(1.13): 
Let � be a topological space and � ⊂ �. If � is an Bc-open in 
� and � is an θ-open in �, then �⋂� is Bc-open in �. 
 
Proof: 
Let � ∈ �⋂�, � ∈ � and � ∈ �, Since � is a Bc-open set in 
�, then for each � ∈ � ∈ ��(�), there exists � is closed set 
in � such that � ∈ � ⊂ � and since � is an θ-open in �, then 
there exists � is open set in � such that � ∈ � ⊂ �� ⊂ �. 
Since � is Bc-open , then � is b-open and since � is an θ-
open, then � is an open by proposition(1.12). Therefore, �⋂� 
is b-open in �. Since �,�� are closed set in � and � ⊂ � , 
then �⋂�� is closed set in �. Thus � ∈ �⋂�� ⊂ �⋂�. Hence 
�⋂� is Bc-open in �. 
 
Proposition(1.14): 
Let � be a topological space and � is an θ-open subset of �. 
If � is an Bc-open in �, then � is Bc-open in �. 
 
Proof: 
Suppose that � is an θ-open subset of � and � ⊂ �, since � is 
a Bc-open set in �, then for each � ∈ � ∈ ��(�), there exists 
� is closed set in � such that � ∈ � ⊂ �. Let � = �⋂�, 
� ⊂ �, and � = �⋂�, � ⊂ �. Then � ∈ � ⊂ �. Hence � is 
Bc-open in �. 
 
Lemma(1.15)[6]: 
 Let � and � be a topological spaces and let � ⊂ �,� ⊂ � be 
two non empty subset: 
1) If � is an open set in � and � is an open set in �, then 
� × � is an open subset in � × �. 
2) If � is a closed set in � and � is a closed set in �, then 
� × � is a closed subset in � × �. 
3) (� × �)���������� = �̅ × �� . 
 
Theorem(1.16): 
Let � and � be a topological spaces and let � ⊂ �,� ⊂ � 
such that � is an θ-open set of �, � is an θ-open set of �, 
then � × � is an θ-open subset of � × �. 
 
Proof: 
Let � be an θ-open set of � and � be an θ-open set of �, then 
for each � ∈ �, there exists � open set in � such that 
� ∈ � ⊂ �̅ ⊂ � and for each � ∈ �, there exists � open set in 
� such that � ∈ � ⊂ �� ⊂ �. By lemma(1.15)(1), then � × � 
is an open set in � × �. Since �̅ ,�� is closed set, then �̅  × �� 
is a closed set in � × � by lemma (1.15)(2). Since �̅  × �� =
� × ��������� by lemma(1.15)(3), then � ∈ � × � ⊂ � × ��������� ⊂ � ×
�. Hence � × � is an θ-open subset of � × �. 
 
Proposition(1.17)[8]: 
Let � and � be a topological spaces and let � ⊂ �,� ⊂ � 
such that � is a b-open set of �, � is an open set of �, then 
� × � is a b-open subset of � × �. 
 
Proposition(1.18): 
Let � and � be a topological spaces and let � ⊂ �,� ⊂ � 
such that � is a Bc-open set of �, � is an θ-open set of �, 
then � × � is a Bc-open subset of � × �. 
 
 
 

Proof: 
Let � be a Bc-open set of � and � be an θ-open set of �, 
then for each � ∈ � ∈ ��(�), there exists � closed set in � 
such that � ∈ � ⊂ � and for each � ∈ �, there exists � 
open set in � such that � ∈ � ⊂ �� ⊂ �. Since � is a Bc-
open in � and � is an θ-open in �, then � is a b-open in � 
and � be an open in �. Thus � × � is a b-open subset of 
� × � by proposition(1.17), � ∈ � and � ∈ �, then 
(�, �) ∈ � × � ∈ ��(�). Since � ∈ � ⊂ � and � ∈ � ⊂
�� ⊂ � such that � is closed set in � and �� is closed set 
in �, then � × �� is closed set in � × �. Therefore, (�,�) ∈
 � × �� ⊂ � × �. Hence � × � is a Bc-open subset in 
� × �.  
 
Definition(1.19)[1]: 
Let � be a topological space and � ∈ �. Then a subset � of 
� is said to be a θ-neighborhood of �, if there exists θ-open 
set � in � such that � ∈ � ⊂ �. 
 
Definition(1.20)[5]: 
Let � be a topological space and � ⊂ �. A point � ∈ � is 
said to Bc-interior point of �, if there exist a Bc-open set � 
such that � ∈ � ⊂ �. The set of all Bc-interior points of � 
is called Bc-interior of � and is denoted by �∘��.  
 
Theorem(1.21)[5]: 
Let � be a topological space and �,� ⊂ �, then the 
following statements are true: 
1) �∘�� is the union of all Bc-open set which are contained 
in �. 
2) �∘�� is Bc-open set in �. 
3) �∘�� ⊂ �. 
4) � is Bc-open if and only if � = �∘��. 
5) (�∘��)∘�� = �∘��. 
6) If � ⊂ �, then �∘�� ⊂ �∘��. 
7) �∘��⋃�∘�� ⊂ (�⋃�)∘��. 
8) (�⋂�)∘�� ⊂ �∘��⋂�∘��. 
 
Definition(1.1.22)[5]: 
Let � be a topological space and � ⊂ �. The Bc-closure of 
� is defined by the intersection of all Bc-closed sets in � 
containing �, and is denoted by �̅��.  
 
Theorem(1.23)[5]: 
Let � be a topological space and �,� ⊂ �. Then the 
following statements are true: 
1) �̅�� is the intersection of all Bc-closed sets containing �. 
2) �̅��is Bc-closed set in �. 
3) � ⊂ �̅��. 
4) � is Bc-closed set if and only if � = �̅��. 
5) (�̅��)��������� = �̅��. 
6) If � ⊂ �. then �̅�� ⊂ ���� . 
7) �̅��⋃���� ⊂ (�⋃�)�����������. 
8) (�⋂�)����������� ⊂ �̅��⋂����. 
 
Proposition(1.24)[5]: 
Let � be a topological space and � ⊂ �. Then � ∈ �̅�� if 
and only if �⋂� ≠ � for every Bc-open set � containing 
�. 
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Definition(1.25)[5]: 
Let � be a topological space and � ⊂ �. A point � is said to 
be Bc-limit point of �, if for each Bc-open set � containing 
�, �⋂(� − ���) ≠ �. The set of all Bc-limit points of � is 
called a Bc-derived set of � and is denoted by ����. 
 
Proposition(1.26)[5]: 
Let � be a topological space and � ⊂ �. Then �̅�� = �⋃����  
 
Proposition(1.27):  
Let � be a topological space and � ⊂ �, then �̅�� is the 
smallest Bc-closed set containing �.  
 
Proposition(1.28)[5]: 
Let � be a topological space and � ⊂ �, then the following 
statements are true: 
1) (�̅��)� = (��)∘��. 
2) (�∘��)� = (��)��������. 
3) �̅�� = ���∘���

�
. 

4) �∘�� = ���������
�
. 

Definition(1.29): 
Let � be a topological space and � ⊂ �, � is called θ-regular 
open set in � iff � = �̅�∘�. The complement of θ-regular 
open set is called θ-regular closed. 
 
Definition(1.30): 
 Let � be a topological space and � ⊂ �, � is called Bc-
regular open set in � iff � = �̅��∘�� . The complement of Bc-
regular open set is called Bc-regular closed. 
 
Remark(1.31): 
Let � be a topological space and � ⊂ �, � is Bc-regular open 
set, then �̅��∘�� is Bc-regular open set. 
 
Proof: 
 To prove �̅��∘�� is Bc-regular open we must prove that 

�̅��∘�� = �̅��∘������������
∘��

, since � ⊂ �̅�� , then �∘�� ⊂ �̅��∘�� 
and since � is Bc-open set, hence � ⊂ �̅��∘��  �̅��∘�� ⊂

�̅��∘������������
∘��

 … (1) Since �̅��∘�� ⊂ �̅�� , then �̅��∘������������ ⊂

�̅��∘�� = �̅�� , hence �̅��∘������������
∘��

⊂ �̅��∘�� … (2) From (1) 

and (2) we get �̅��∘�� = �̅��∘������������
∘��

 . Hence �̅��∘�� is Bc-
regular open.  
 
2.Separation Axiom 
 
Definition(2.1)[7]: 
A space X  is called θ�� − ����� iff for each � ≠ � in � 
there exist disjoint θ-open sets �,� such that � ∈ �, � ∈ �. 
 
Definition(2.2): 
A space � is called Bc-regular space iff for each � in � and � 
θ-closed set such that � ∉ �, there exist disjoint Bc-open sets 
�,� such that � ∈ �,� ⊆ � . 
 
 
 
 

Proposition(2.3): 
A space � is Bc-regular space iff for every � ∈ � and each 
θ-open set � in � such that � ∈ � there exists an Bc-open 
set � such that ∈ � ⊆ �� �� ⊆ � . 
 
Proof: 
Let � be a Bc-regular space and � ∈ � , � is θ-open in � 
such that � ∈ �. Thus �� is θ-closed set , � ∉ �� . Then 
there exist disjoint Bc-open set � ,� such that � ∈
 � ,  �� ⊆ �. Hence � ∈ � ⊆ �� �� ⊆ �������� ⊆ �� ⊆ �. 
Conversely let � be an θ-closed set such that � ∉ � . Then 
�� is an θ-open set and � ∈ ��. Thus there exist � is Bc-
open set such that � ∈ � ⊆ �� �� ⊆ ��. Then � ∈ �, 
� ⊆ (�� ��)� and �, (�� ��)� are disjoint Bc-open set . 
Hence � is Bc-regular space . 
 
Definition(2.4): 
A space � is called Bc*-regular space iff for each � in � 
and Bc-closed set � such that � ∉ �, there exist disjoint 
sets �,� such that � is an θ-open, � is a Bc-open and 
� ∈ �,� ⊆ �. 
 
Proposition(2.5):  
A space � is Bc*-regular space iff for every � ∈ � and 
each Bc-open set � in � such that � ∈ � there exists an θ-
open set � such that � ∈ � ⊆ �� �� ⊆ �. 
 
Proof: 
Let � be a Bc*-regular space and � ∈ �, � is Bc-open in � 
such that � ∈ �. Thus �� is Bc-closed set, � ∉ ��. Then 
there exist disjoint set �,� such that � is an θ-open, � is a 
Bc-open and � ∈  �,�� ⊆ �. Hence � ∈ � ⊆ �� �� ⊆
�������� ⊆ �� ⊆ �. Conversely, let � be an Bc-closed set such 
that � ∉ �. Then �� is an Bc-open set and � ∈ ��. Thus 
there exist � is θ-open set such that � ∈ � ⊆ �� �� ⊆ ��. 
Then � ∈ �, � ⊆ (�� ��)� and (�� ��)�  is Bc-open 
set, �⋂(�� ��)� = �. Hence � is Bc*-regular space. 
 
Definition(2.7): 
A space � is called almost Bc-regular space iff for each � 
in � and � is θ-regular closed set such that � ∉ �, there 
exist disjoint Bc-open sets �,� such that � ∈ � ,� ⊆ �. 
 
Definition(2.8):  
A space � is called almost Bc*-regular space iff for each � 
in � and � is Bc-regular closed set such that � ∉ �, there 
exist disjoint sets �,� such that � is θ-open , � is Bc-open 
and � ∈ �,� ⊆ �. 
 
Proposition(2.9): 
A space � is almost Bc-regular space iff for every � ∈ � 
and each θ-regular open set � in � such that � ∈ � there 
exists an Bc-open set � such that � ∈ � ⊆ �� �� ⊆ �. 
 
Proof: 
Let � be a almost Bc-regular space and � ∈ �, � is θ-
regular open set in � such that � ∈ �. Thus �� is θ-regular 
closed set, � ∉ �� . Then there exist disjoint Bc-open set 
�,� such that � ∈  �,�� ⊆ �. Hence � ∈ � ⊆ �� �� ⊆
�������� ⊆ �� ⊆ �. Conversely, Let � be an θ-regular closed 
set such that � ∉ �. Then �� is an θ-regular-open set and 

Paper ID: OCT14501I 1720



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 10, October 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

� ∈ ��. Thus there exist � is Bc-open set such that � ∈ � ⊆
�� �� ⊆ ��. Then � ∈ �, � ⊆ (�� ��)� and �, (�� ��)� are 
disjoint Bc-open set. Hence � is almost Bc-regular space. 
 
Proposition(2.10):  
A space � is almost Bc*-regular space iff for every � ∈ � 
and each Bc-regular open set � in � such that � ∈ � there 
exists an θ-open set � such that � ∈ � ⊆ �� �� ⊆ �. 
 
Proof: 
Let � be a almost Bc*-regular space and � ∈ �, � is Bc-
regular open in � such that � ∈ �. Thus �� is Bc-regular 
closed set, � ∉ �� . Then there exist disjoint set �,� such 
that � is an θ-open, � is a Bc-open and � ∈  �,�� ⊆ �. 
Hence � ∈ � ⊆ �� �� ⊆ �������� ⊆ �� ⊆ �. Conversely, let � 
be an Bc-regular closed set such that � ∉ �. Then �� is an 
Bc-regular open set and � ∈ ��. Thus there exist � is θ-open 
set such that � ∈ � ⊆ �� �� ⊆ ��. Then � ∈ �, � ⊆ (�� ��)� 
and (�� ��)� is Bc-open set, �⋂(�� ��)� = �. Hence � is 
almost Bc*-regular space. 
 
Definition(2.11):  
A space � is called Bc-normal space iff for every disjoint θ-
closed set ��,�� there exist disjoint Bc-open sets �� ,�� such 
that �� ⊆ ��,�� ⊆ ��. 
 
Proposition(2.12):  
A space � is called Bc-normal space iff for every θ-closed set 
� ⊆ � and each θ-open set � in � such that � ⊆ � there 
exists an Bc-open set � such that � ⊆ � ⊆ �� �� ⊆ �. 
 
Proof: 
Let � be a Bc-normal space and let � is an θ-closed set in 
�, � is an θ-open set such that � ⊆ �. Thus �� is θ-closed 
set �� ,� are disjoint θ-open set, then there exists Bc-open 
sets �,� such that � ⊆ �, �� ⊆ �,�⋂� = �. Hence 
� ⊆ � ⊆ �� �� ⊆ �������� = �� ⊆ �. Conversely, let ��,  �� be 
a disjoint θ-closed set. Then ��� is an θ-open set and �� ⊆
���. Thus there exist � is Bc-open set such that �� ⊆ � ⊆
�� �� ⊆ ���. Then �� ⊆ �, �� ⊆ (�� ��)� and �, (�� ��)� are 
disjoint Bc-open set. Hence � is Bc-normal space. 
 
Proposition(2.13): 
If � is both Bc-normal and θ�� − ����� , then � is Bc-
regular. 
 
Proof: 
Let � ∈ � and � be an θ-open set such that � ∈ �. Then ��� 
is θ-closed subset of �. Thus there exists a Bc-open set � 
such that ��� ⊆ � ⊆ �� �� ⊆ �. By proposition (2.12). So 
that � ∈ � ⊆ �� �� ⊆ � and hence by proposition (2.3) � is 
Bc-regular space. 
 
3.Bc-paracompact Spaces 
 
Definition(3.1)[9]: 
A covering of a topological space � is the family ���:� ∈ Λ� 
of subsets such that ⋃ ���∈� = �. If each ��is open, then 
���:� ∈ Λ�is called an open covering, and if each set ��is 
closed, then ���:� ∈ Λ� is called a closed covering. A 
covering ���: � ∈ Γ� is said to be refinement of a covering 

���:� ∈ Λ� if for each � in Γ there exists some � in Λ such 
that �� ⊂ ��.  
 
Definition(3.2): 
The family �����∈Λ of a subset of a space � is said to be an 
θ-locally finite if for each � ∈ � there exist an θ-
neighborhood �� of � such that the set �� ∈ Λ:��⋂�� ≠
�� is finite. 
 
Proposition(3.3): 
If �����∈Λ is an θ-locally finite family of subset of a space 
�, there exist a family �����∈Λ, �� ⊂ ��for each �, then 
�����∈Λ is an θ-locally finite. 
 
Proof: 
Let �����∈Λ is an θ-locally finite, for each � ∈ �, then 
there exist �� θ-open set containing � such that ��⋂��� ≠
�, � = 1,… , �, hence ��⋂��� = �, � = � + 1, � + 2,… . 
Since �� is an θ-open set, then �� is Bc-open set, and hence 
��� is Bc-closed set. Therefore, for ��� ⊂ ���, � = � +
1,� + 2,… . Hence ��� ⊂ ��� ⊂ ��� , � = � + 1, � + 2,… 
.This implies ��⋂��� = �, � = � + 1, � + 2,… . Hence 
���⋂��� ≠ �, � = 1,… , ��.Therefore, �����∈Λ is an θ-
locally finite.  
 
Proposition(3.4): 
 Let (�, �) be a topological space and � ⊂ �. If �� is an θ-
locally finite, then ������

��is an θ-locally finite. 
 
Proof: 
Let �����∈Λ is an θ-locally finite, for each � ∈ �, then 
there exist θ-open set �� containing � such that ��⋂��� ≠
�, � = 1,… , �, hence ��⋂��� = �, � = � + 1, � + 2,… . 
Since �� is an θ-open set, then �� is Bc-open set , and 
hence ��� is Bc-closed set. Therefore, ��� ⊂ ��� , � = � +
1,� + 2,… . Hence ��������� ⊂ ���������� = ��� , � = � + 1, � +
2,… ,then ��������� ⊂ ��� , � = � + 1, � + 2,… . This implies 
��⋂��������� = �, � = � + 1, � + 2,… . Hence ���⋂��������� ≠

�, � = 1,… , ��. Therefore , ������
�� is an θ-locally finite . 

 
Proposition(3.5): 
Let �����∈Λ is an θ-locally finite Bc-closed family of a 
space � then ⋃ ������

��
�∈Λ = ⋃ ���∈Λ������������� . 

 
Proof: 
Since �� ⊂ ⋃ ���∈Λ , then ������

�� ⊂ ⋃ ���∈Λ�������������by 
theorem(1.23) and hence⋃ ������

��
�∈Λ ⊂ ⋃ ���∈Λ�������������  . To 

prove that ⋃ ���∈Λ������������� ⊂ ⋃ ������
��

�∈Λ . Let � ∈ ⋃ ���∈Λ������������� 
such that � ∉  ⋃ ������

��
�∈Λ , then � ∉ ������

�� , for each � ∈ Λ . 
Since �����∈Λ is an θ-locally finite, then there exists an θ-
open set �� containing � such that ��⋂�� ≠ � for only a 
finite member of � say ��,… , ��. Since � ∉ ������

��  for each 
∈ Λ , then � ∉ �� and � ∉ ���

��  for each � ∈ Λ by 
proposition(1.27) . Thus there exists an Bc-open set �� 
which contain � such that ��⋂�� = � for each � ≠
��,… , ��. Let � ∈ ��⋂�� = � is a Bc-open and since 
��⋂�� = �,for each � = ��,… , ��, Since � ⊆ �� then 
�⋂��� = �,… , �⋂��� = � . Since ��⋂�� = �, for 
� = ��,… , �� , then �⋂�� = � for each � ≠ ��,… , ��, 
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then �⋂�� = �, for � ∈ Λ . Now, we have ⋂(⋃ ���∈Λ ) =
� , so that since � ∈ � , then � ∉ ⋃ ���∈Λ�������������, by 
proposition(1.24) which is a contradiction . Thus ∈
⋃ ���∈Λ�������������  , so that ⋃ ���∈Λ������������� ⊂ ⋃ ������

��
�∈Λ , then 

⋃ ���∈Λ������������� = ⋃ ������
��

�∈Λ . 
 
Proposition (3.6): 
The union of member of θ-locally finite Bc-closed sets is Bc-
closed. Proof: 
Let �����∈� be a family of θ-locally finite Bc-closed sets. 
Then ⋃ ���∈Λ������������� = ⋃ ������

��
�∈Λ = ⋃ ���∈Λ  , by theorem (3.4) 

and hence ⋃ ���∈Λ  is Bc-closed set by theorem (1.23). 
 
Theorem (3.7): 
Let �����∈� be a family of Bc-open subsets of a space � and 
let �����∈�be an θ-locally finite Bc-closed covering of � such 

that for each � ∈ Γ the set �� ∈ Λ: ��⋂�� ≠ �� is a finite. 
Then there exists θ-locally finite family �����∈� of Bc-open 
set of � such that �� ⊂ ��  for each � ∈ Λ. 
 
Proof: 
For each �, let �� = ���� − ��⋂�� = ����. Clearly �� ⊂
��  and since �����∈� is an θ-locally finite, it follow that ��  is 
Bc-open by proposition (3.6). Let � be a point of �, there 
exists an θ-neighborhood � of � , and a finite subset � of Γ 
such that �⋂�� = � if � ∉ � . Hence ⊂ ⋃ ���∈�  . Now 
��⋂�� ≠ � iff ��⋂�� ≠ � . For each � ∈ � the set �� ∈
Λ: ��⋂�� ≠ �� is a finite. Hence �� ∈ Λ:�⋂�� ≠ �� is a 
finite. 
 
Lemma(3.8): 
If every θ-open cover of a topological space � has an θ-
locally finite Bc-closed refinement, then every θ-open cover 
of � has an θ-locally finite Bc-open refinement. 
 
Proof: 
Let � be θ-open cover of �, and � = ���: � ∈ �� an θ-
locally finite of � and for each � ∈ � choose an θ-
neighborhood �� of � which meets only finitely many 
members of �. Let ℱ be an θ-locally finite Bc-closed 
refinement of the θ-open cover ���: � ∈ �� and for each � ∈
�, let �� = (�� ∈ ℱ: �⋂���)� , then �� is a Bc-open and 
contain �� , for each � ∈ � and � ∈ ℱ, we have �� ⋂� ≠ � 
iff ��⋂� ≠ �. For each � ∈ � take a �� ∈ � such that 
�� ∈ �� and let �� = �� ⋂��. The family �����∈� is a Bc-open 
refinement of �. Since for each � ∈ � has an θ-neighborhood 
such that meets only finitely many members of ℱ and every 
members of ℱ meets only finitely many members of �. 
Therefore, �����∈� is an θ-locally finite Bc-open refinement of 
�. 
 
Theorem(3.9): 
If every finite θ-open covering of a space � has an θ-locally 
finite Bc- closed refinement, then � is Bc-normal space. 
 
Proof: 
Let � be a topological space such that each finite θ-open 
covering of � which has an θ-locally finite Bc-closed 
refinement and let �,� be a disjoint θ-closed set of �. The θ-

open covering ��� ,��� of � has an θ-locally finite Bc-
closed refinement W. Let � be the union of the members of 
� disjoint from � and let � be the union of the members of 
� disjoint from �.Then � and � are Bc-closed sets and 
�⋃� = �. Thus if � = (�)�and � = (�)�, then �,� are 
disjoint Bc-open sets such that � ⊆ � ,� ⊆ � . Hence � is 
Bc-normal space. 
 
Definition (3.10): 
A topological space � is said to be Bc-paracompact if every 
θ-open covering of � has an θ-locally finite Bc-open 
refinement. 
 
Proposition (3.11): 
Let � be a Bc paracompact space, let � be an θ-open subset 
of � and let � be an θ-closed set of � which is disjoint 
from �. If for every � ∈ � there exist θ-open sets ��  ,�� 
such that � ⊂ �� , � ∈ �� and ��⋂�� = �, then also there 
exist Bc-open sets � ,� such that � ⊂ � , � ∈ � and 
�⋂� = �. 
 
Proof: 
The family ���: � ∈ ��⋃�(�)�� is an θ-open cover of Bc-
paracompact  , so that it has an θ-locally finite Bc-open 
refinement �����∈� . Let 

Γ� = �� ∈ Γ:�� ⊂ ��  for some � ∈ �� . If ∈ Γ� , then 
��⋂�� = � for some � by proposition (3.4) , then ������

��  is 
an θ-locally finite Bc-closed. Therefore,�⋂������

�� = �. 

Now, let � = �⋃ ������
��

�∈�� �
�
and � = ⋃ ���∈�� . Then 

� ⊂ � , � ⊂ � and �⋂� = �. 
 
Proposition(3.12): 
If � is a Bc-paracompact ��� −space , then � is Bc-
regular. 
 
Proof: 
Let � ∈ �and � be an θ-closed set in � such that � ∉ �. 
Then for each � ∈ � there exists θ-open sets �� ,�� such 
that � ∈ ��, � ∈ ��  . It follow from proposition(3.11) there 
exists Bc-open sets � and � such that � ∈ � , � ⊂ � and 
�⋂� = � . Thus � is  
Bc-regular. 
 
Proposition(3.13): 
Let � be a topological space . If each θ-open covering of � 
has an θ-locally finite Bc-closed refinement, then � is Bc-
paracompact Bc-normal Space. 
 
Proof: 
Let � be an θ-open covering of � and let �����∈� be an θ-
locally finite Bc-closed refinement of  . Since �����∈� is an 
θ-locally finite, for each point � of � has an θ-
neighborhood �� such that �� ∈ Λ: ��⋂�� ≠ �� is a finite. 
If �����∈� is an θ-locally finite Bc-closed refinement of the 
θ-open covering �����∈� of  , then for each � ∈
Γ the set �α ∈ Λ: B�⋂A� ≠ ϕ� is a �inite . It follows from 
theorem (3.9), that there exist an θ-locally finite family 
�����∈�of Bc-open sets, such that �� ⊆ ��  for each  . Let 
�� be a member of � such that �� ⊆ ��  , for each � ∈ Λ . 
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Then (��⋂��)�∈� is an θ-locally finite Bc-open refinement 
of  . Thus � is Bc-paracompact, so that � is Bc-normal space 
by theorem(3.9). 
 
Theorem(3.14): 
 Bc*-regular space is Bc-paracompact Bc-normal if and only 
if each θ-open covering has an θ-locally finite Bc-closed 
refinement. 
 
Proof: 
 Suppose that � is Bc-paracompact Bc-normal space and let 
�����∈� be an θ- open covering of  . Since � is Bc*-regular, 
there exists an θ-open set �� such that � ∈ �� ⊆ ���

�� ⊆ �� for 
some  . The family ���:� ∈ �� is an θ-open cover of � and 
since � is Bc-paracompact, then there exists an θ-locally 
finite Bc-open refinement � = ���: � ∈ �� of ���: � ∈ ��. 
Hence ������

�� ⊂ ���
�� ⊂ �� , then �������

��: � ∈ �� is an θ-
locally finite Bc-open refinement of �����∈� . Conversely , 
from theorem(3.13). 
 
Theorem(3.15): 
Let � be any Bc*-regular space , the following condition are 
equivalent: 
1) � is Bc-paracompact. 
2) Every θ-open cover of � has an θ-locally finite refinement. 
3) Every θ-open cover of � has a Bc-closed θ-locally finite 
refinement. 
 
Proof: 
12 
 Let � be a Bc-paracompact , then every θ-open cover of � 
has an θ-locally finite refinement. 
23 
 Let � be an θ-open covering of �. Since � is Bc*-regular, 
there exists θ-open set �� such that ∈ �� ⊆ ���

�� ⊆ �� . The 
family � = ���:� ∈ �� is an θ-open cover of �, by (2) � has 
an θ-locally finite refinement. Hence ����

��: � ∈ �� is an θ-
locally finite Bc-open refinement of �. 
31 
By lemma(3.14). 
 
Lemma(3.16): 
Let � be any Bc*-regular Bc-paracompact space. Then every 
Bc- open cover ���: � ∈ �� has an θ-locally finite Bc-open 
refinement ���: � ∈ �� such that �����

�� ⊆ �� for each ∈ � . 
 
Proof: 
Let ���: � ∈ �� be any Bc-open cover of  . For � ∈ � ,� ∈ �� 
,for some � ∈ � and since � is Bc*-regular , hence by 
proposition(1.36), there exists an θ-open cover � =
���: � ∈ �� and ������

�� ⊆ �� . Since � is Bc-paracompact , 
then � has an θ-locally finite Bc-open refinement ���: ℎ ∈
�� for each ℎ ∈ � choose �(ℎ) ∈ � such that ������

�� ⊆
��(�),and let �� = ⋃ ���(�)��  . Since ⋃ ���(�)�� ⊂
⋃ ���(�)����������������� = ⋃ ������

��
�(�)�� ⊂ �� ,then ���: � ∈ �� is an θ-

locally finite Bc-open refinement of ���: � ∈ �� such that 
�����

�� ⊆ �� for each � ∈ �. 
 
 

Definition(3.17): 
Let � be a topological space and ⊆ � . � is said to be Bc-
dence set if �̅�� = �. 
 
Definition(3.18): 
A topological space � is said to be Bc-Lindelof if every 
Bc-open cover of � has a countable sub cover. 
 
Theorem(3.19): 
Let � be any Bc*-regular Bc-paracompact space such that 
there exists an θ-open Bc-dense Bc-Lindelof set  , then � is 
a Bc-Lindelof . 
 
Proof: 
Let � = ���: � ∈ �� be any Bc-open cover of �. For each 
� ∈ �, � ∈ ��, for some � ∈ �. By lemma (3.16), there 
exists a Bc-open θ-locally finite refinement ���: � ∈ �� of � 
such that ���

�� ⊆ �� , for each � ∈ � . Then ���⋂�: � ∈ �� is 
Bc-open cover of �, by proposition(1.13). Since � is Bc-
Lindelof , there exists a countable set �∘ ⊂ � such that 
� = ⋃���⋂�: � ∈ �∘�. So  � = �̅�� = ⋃ ��⋂��∈�∘

���������������� =
⋃ ��⋂�����������∈�∘ ⊂ ⋃ ���

��
�∈�∘ ⊂ ⋃ ���∈�∘ , hence � is Bc-

Lindelof. 
 
Lemma(3.20): 
If � is an θ-open covering of a topological space product 
� × � of a Bc-paracompact space � and an θ-compact 
space  , then � has a refinement of the form ��� × ��� : � =
1,… , ���. Where ���:� ∈ Λ� is an θ-locally finite Bc-open 
covering of �, and for each �,���� : � = 1,… , ��� is a finite 
θ-open covering of �. 
 
Proof: 
Let � be a point of  . Since � is an θ-compact there exists 
an θ-open neighborhood �� of � and a finite θ-open 
covering �� of � such that �� × � is contained in some 
member of � if � ∈ ��. Let ���:� ∈ Λ� be an θ-locally 
finite Bc-open refinement of open covering ���: � ∈ X� of 
the Bc-paracompact space �. For � in Λ choose � in X such 
that �� ⊂ �� and let �� = ���� : � = 1,… , ���. Then 
��� × ���� is a Bc-open refinement of  �. 
 
Proposition(3.21): 
The product of a Bc-paracompact space and an θ-compact 
space is a Bc-paracompact space. 
 
Proof: 
Let � be a Bc-paracompact space and � be an θ-compact 
space and let � be an θ-open covering of the topological 
product � × �. Then by lemma(3.20) � has a Bc-open 
refinement of the form ��� × ���: � = 1,… , ���, where 
���:� ∈ Λ� is an θ-locally finite Bc-open refinement and 
���� : � = 1,… , ��� is a finite θ-open covering of � for 
� ∈ Λ . Therefore, � × � is a Bc-paracompact space. 
 
Definition (3.22): 
A space � is said to be nearly Bc-paracompact space if 
each θ-regular open covering of � has an θ-locally finite 
Bc-open refinement. 
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Lemma(3.23): 
Let � be any almost Bc*-regular nearly Bc-paracompact 
space. Then every Bc-regular open cover ���: � ∈ �� has an 
θ-locally finite Bc-regular open refinement ���: � ∈ �� such 
that ���

�� ⊆ �� for each ∈ �.  
 
Proof: 
Let ���: � ∈ �� be any Bc-regular open cover of �. For 
� ∈ �,� ∈ �� , for some � ∈ � and since � is almost Bc*-
regular , hence by proposition(2.10), there exists an θ-regular 
open cover � = ���:� ∈ �� and ������

�� ⊆ �� . Since � is 
nearly Bc-paracompact, then � has an θ-locally finite Bc-
open refinement ���: ℎ ∈ �� for each ℎ ∈ � choose �(ℎ) ∈ � 
such that ������

�� ⊆ ��(�), and let �� = ⋃ ���(�)�� . Since 
⋃ ���(�)�� ⊂ ⋃ ���(�)����������������� = ⋃ ������

��
�(�)�� ⊂ ��, then �� ⊂

�����
�� ⊂ ��  , hence �� ⊂ �����

��∘�� ⊂ �����
��

⊂ ��. Let �� =
�����

��∘��, then ���: � ∈ �� is an θ-locally finite Bc-regular open 
refinement of ���: � ∈ �� such that ���

�� ⊆ �� for each � ∈ �. 
 
Theorem (3.24): 
 For any space  , the following are equivalent: 
1) � is nearly Bc-paracompact. 
2) Every θ-regular open cover of � has a Bc-regular open θ-

locally finite refinement. 
3) Every θ-regular open cover of � has a Bc-regular closed 

θ-locally finite refinement. 
 
Proof: 
12 
Let � be any θ-regular open cover of �, then � has an θ-
locally finite Bc-open refinement �. Consider the family 
� = �����∘��:� ∈ �� is an θ-locally finite Bc-regular open 
refinement of �. 
23 
It is clear since every Bc-regular open set is Bc-regular closed 
set. 
31 
From lemma(3.8). 
 
References 

 
[1] M. Y. Abid, "On the θ-g-continuity* in topological 

spaces". Journal of Kerbala University, Vol. 10, No. 1 
Sientific. (2012). 

[2] A. AL-Omari and T. Noiri, "Characterizations of nearly 
Lindelof spaces", Jordon Journal of Mathematics and 
Statistics (JJMS) 3(2), 81-92, (2010). 

[3] D. Andrijevic, On b-open sets, Math. Vesnik, 59-64, 
48(1996). 

[4] C. K. Basu, M. K. GH SH and S. S. Mandal, "A 
Generalization of H-closed spaces", Tamkangj Urnal F 
Mathematics, Vol. 39, No. 2, Summer 2008, pp. 143-
153. 

[5] H. Z. Ibrahim, "Bc-open sets in topological spaces", 
Advances in pure Math., 3, 34-40, (2013). 

[6] O. A. Ivanov, N. Yu. Netsvetaev and V. M. Kharlamov, 
"Elementary Topology Problem Textbook", American 
Mathematical Society, 2008, 400 pages. ISBN 978-0-
8218-4506-6. 

[7] J. K. Kohli and A. K. Das, "A class of spaces 
containing all generalized absolutely closed(almost 
compact) spaces", Applied General Topology, 
Universidad Politécnica de Valencia, Vol. 7, No. 
2,2006, pp. 233-244. 

[8] A. S. Majid, "On some topological spaces by using b-
open set", M. S. C. Thesis University of AL-Qadissiya, 
College of Mathematics and Computer science, 2011. 

[9] A. P.Pears, " On Dimension Theory of General 
Spaces", Cambridge University press, 1975. 

[10] N. V. Velicko, H-closed topological spaces, American 
Mathematical Society, Vol. 78, No. 2, pp. 103-118, 
(1968).  

Paper ID: OCT14501I 1724




