
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 9, September 2013
www.ijsr.net

Minimize Staleness and Stretch in Streaming Data
Warehouses

S. M. Subhani1, M. Nagendramma2

1, 2Department of CSE, BVSREC, Chimakurthy, A.P, India

Abstract: We study scheduling algorithms for loading data feeds into real time data warehouses, which are used in applications such
as IP network monitoring, online financial trading, and credit card fraud detection. In these applications, the warehouse collects a
large number of streaming data feeds that are generated by external sources and arrive asynchronously. We discuss update scheduling
in streaming data warehouses, which combine the features of traditional data warehouses and data stream systems. In our setting,
external sources push append-only data streams into the warehouse with a wide range of inter-arrival times. While traditional data
warehouses are typically refreshed during downtimes, streaming warehouses are updated as new data arrive. In this paper we
develop a theory of temporal consistency for stream warehouses that allows for multiple consistency levels. We model the
streaming warehouse update problem as a scheduling problem, where jobs correspond to processes that load new data into tables,
and whose objective is to minimize data staleness over time.

Keywords: Data warehouse maintenance, online scheduling

1. Introduction

The goal of a streaming warehouse is to propagate new
data across all the relevant tables and views as quickly as
possible. Once new data are loaded, the applications and
triggers defined on the warehouse can take immediate
action. This allows businesses to make decisions in nearly
real time, which may lead to increased profits, improved
customer satisfaction, and prevention of serious problems
that could develop if no action was taken.

Data warehouses integrate information from multiple
operational databases to enable complex business analyses.
In traditional applications, warehouses are updated
periodically and data analysis is done off-line [3]. In
contrast, real time warehouses [1], also known as active
warehouses [4], continually load incoming data feeds to
support time-critical analyses. For instance, an Internet
Service Provider (ISP) may collect streams of network
configuration and performance data generated by remote
sources in nearly real time. New data must be loaded in a
timely manner and correlated against historical data to
quickly identify network anomalies, denial-of-service
attacks, and inconsistencies among protocol layers.
Similarly, online stock trading applications may discover
profit opportunities by comparing recent transactions in
nearly real time against historical trends. Banks may be
interested in analyzing incoming streams of credit card
transactions to protect customers against identity theft.
Since the effectiveness of a real time warehouse depends on
its ability to ingest new data, we study problems related to
data staleness. In our setting, each table in the warehouse
collects data from an external source. The arrival of a set of
new data releases an update that seeks to append the data to
the corresponding table. Since existing data are not
modified, the processing time of an update is at most
proportional to the amount of new data.

Our first objective is to nonpreemptively1 schedule the
updates on one or more processors in a way that minimizes
the total staleness of all tables. Our first contribution
answers a question implicit in [2] regarding the difficulty of

this problem. We prove that even in the purely online
model, any on-line non preemptive algorithm achieves
staleness at most a constant factor times optimal, provided
that no processor is ever voluntarily idle and provided that
the processors are sufficiently fast.

2. System Model

2.1Warehousing Architecture

Figure 1 illustrates a streaming data warehouse. Each data
stream is generated by an external source, with a batch of
new data, consisting of one or more records being pushed to
the warehouse with period pi. If the period of a stream is
unknown or unpredictable, we let the user choose a period
with which the warehouse should check for new data.
Examples of streams collected by an Internet Service
provider include router performance statistics such as CPU
usage, system logs, routing table updates, link layer alerts
etc.An important property of the data streams in our
motivating applications is that they are append-only,i.e.,
existing records are never modified or deleted. For example,
a stream of average router CPU utilization measurement
may consist of records with fields (timestamp, router name,
CPU utilization) and a new data file with updated CPU
measurement for each router may arrive at the warehouse
every five minutes. [5]

Figure 1: Stream data warehouse

A streaming data warehouse maintains two types of tables:
base and derived. Each table may be stored partially or

Paper ID: 21091302 375

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 9, September 2013
www.ijsr.net

wholly on disk. A base table is loaded directly from a data
stream. A derived table is a materialized view defined over
one or more tables. Each base or derived table Tj has a user
–defined priority pj and a time-dependent staleness function
sj(τ) that will be defined shortly. Relationships among
source and derived tables form a (directed and acyclic)
dependency graph. For each table Tj, we define a set of its
ancestor tables as those which directly or indirectly serve as
its sources, and a set of its dependent tables as those which
are directly or indirectly sourced from Tj. For example, T1,
T2 and T3 are ancestors of T4, and T3 and T4 are dependents
of T1.In practice, warehouse tables are horizontally
partitioned by time so that only a small number of recent
partitions are affected by updates [6][7].

2.2 Earliest Deadline First (EDF)

EDF has been proven to be an optimal uniprocessor
scheduling algorithms .This means that if a set of tasks is
unschedulable under EDF, then no other scheduling
algorithm can feasible schedule this task set. The EDF
algorithm chooses for execution at each instant in the time
currently active job(s) that have the nearest deadlines. The
EDF implementation upon uniform parallel machines is
according to the following rules, No Processor is idled while
there are active jobs waiting for execution, when fewer then
m jobs are active, they are required to execute on the fastest
processor while the slowest are idled, and higher priority
jobs are executed on faster processors. In Earliest Deadline
First scheduling, at every scheduling point the task having
the shortest deadline is taken up for scheduling. A task is
schedule under EDF, if and only if it satisfies the condition
that total processor utilization (Ui) due to the task set is less
than 1.

The Aim of this work is to provide a sensitivity analysis for
task deadline context of multiprocessor system by using a
new approach of EFDF (Earliest Feasible Deadline First)
algorithm. In order to decrease the number of migrations we
prevent a job from moving one processor to another
processor if it is among them higher priority jobs. Therefore,
a job will continue its execution on the same processor if
possible (processor affinity). The result of these comparisons
outlines some situations where one scheme is preferable over
the other. Partitioning schemes are better suited for hard real-
time systems, while a global scheme is preferable for soft
real-time systems.

The final EDF – partitioned scheduling algorithm is
following

1. Sort the released jobs by the local algorithm
2. For each job ji in sorted order

a) If ji’s home track is available, schedule ji on its home
track

b) Else, if there is an available free track, schedule ji on the
free track

c) Else, scan through the tracks r such that ji can be
promoted to track r
i) If track r is free and there is no released job

remaining in the sorted list for home track r,
ii) Schedule ji on track r

d) Else, delay the execution of ji

3. Minimizing Staleness

We call an algorithm eager, or work-conserving, if it leaves
no processor idle while at least one pending update exists.
We first state the rather-inscrutable Theorem 3.1, followed
by an easy-to-read corollary, which implies that for any C <
(v3 - 1)/2, there is a constant (dependent on C) such that the
staleness of any eager algorithm is at most that constant
factor times optimal, provided that each ai is at most Cp/t.

Theorem 3.1. Fix p, t. For any and d such that 0 <, d < 1,
define C, d = vd (1 -)/v3 > 0. Given p processors and t
tables, pick any a such that a/ [1 - a/ (p/t)] = C, d p/t. Then
the penalty incurred by an eager algorithm is at most (1 + a)
2(1/ 4) (1/ (1 - d)) times LOW, provided that each ai = a.

Since LOW is a lower bound on the staleness achieved by
any algorithm, even the optimal, prescient one, and penalty
is an upper bound on the staleness achieved by any eager
algorithm, the corollary implies the claimed competitiveness
Proof: B be the set of batches in this run. For some batch Bi
B, let ci be the length of the first update, di be the wait time,
and bi be the total length of the batch, i.e., the sum of the
lengths of its updates. Clearly,

ci = bi = ci + di, (1)

since ci = bi is obvious and since ci + di is the duration in
time from the start (not release) time of the first job in the
batch till the update for the batch starts, and this duration is
clearly at least the length bi of the batch. For the penalty of
this batch, denoted by i, we take the square of the own time,
i.e., the length ci of the first update plus the wait time di
plus the processing time of the entire batch:

i= [(ci+di) +abi] 2, by the definition of penalty (2)
 = (1+a) 2(ci+di) 2, by (1). (3)

Figure 2 illustrates the quantities bi, ci and di using the same
example as that in Figure 1; in particular, we consider the
batch consisting of updates arriving at times ri, 1 and ri, 2.

Let A be the set of all updates. From the definition of
LOW, each update i A has a budget of a2 units, where ai
is the length of update i. Our proof requires the use of a
charging scheme. A charging scheme specifies what
fraction of its budget each update pays to a certain batch.
Let us call a batch Bi tardy if ci < (ci + di) (where comes
from Theorem 3.1); otherwise it is punctual. Let us denote
the corresponding sets by Bt and Bp respectively. More
formally, a charging scheme is a matrix (vij) of nonnegative
values, where vij shows the extent of dependence of batch i
on the budget available to batch j, with the following two
properties.

Paper ID: 21091302 376

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 9, September 2013
www.ijsr.net

Figure 2: A plot of the staleness of table i over time

4. Conclusion

In this paper, we studied the complexity of scheduling data-
loading jobs to minimize the staleness of a real time stream
warehouse. We proved that any on-line non-preemptive
algorithm that is never voluntarily idle achieves a constant
competitive ratio with respect to the total staleness of all
tables in the warehouse, provided that the processors are
sufficiently fast.

We solved the problem of scheduling updates in a real-time
streaming warehouse. We projected the notion of averages
staleness as a scheduling metric and presented scheduling
algorithms designed to handle complex environment of a
streaming data warehouse. We then proposed a scheduling
framework that assigns jobs to processing tracks and also
uses the basic algorithms to schedule jobs within a same.

The main feature of our framework is the ability to reserve
resources for short jobs that dften correspond to important
frequently refreshed tables while avoiding the inefficiencies
associated with partitioned scheduling techniques. Feature
work is needed for choosing the right scheduling
granularity when it is more efficient to update multiple
tables together.

References

[1] L. Golab, T. Johnson, J. S. Seidel and V. Shkapenyuk,

Stream Warehousing with Data Depot, SIGMOD 2009,
847-854.

[2] L. Golab, T. Johnson, and V. Shkapenyuk, Scheduling
Updates in a Real Time Stream Warehouse, ICDE 2009,
1207-1210.

[3] W. Labio, R. Yerneni, and H. Garcia-Molina, Shrinking
the Warehouse Update Window, SIGMOD1999, 383-
394.

[4] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simits
is, and N.-E. Frantzell, Supporting Streaming Updates in
an Active Data Warehouse, ICDE 2007, 476-485.

[5] Scalable Scheduling of Updates in Streaming Data
Warehouses Lukasz Golab, Theodore Johnson and
Vladislav Shkapenyuk AT&T Labs – Research, Florham
Park, NJ, 0793.

[6] N. Folkert, A. Gupta, A. Witkowski, S. Subramanian, S.
Bel lamkonda, S. Shankar, T. Bozkaya, and L. Sheng,
optimizing refresh of a set of materialized views, VLD
B 2005, 1043- 1054.

[7] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk
Stream warehousing with Data Depot, SIGMOD 2009,
847-854.

Paper ID: 21091302 377

