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Abstract: We study scheduling algorithms for loading data feeds into real time data warehouses, which are used in applications such 
as IP network monitoring, online financial trading, and credit card fraud detection. In these applications, the warehouse collects a 
large number of streaming data feeds that are generated by external sources and arrive asynchronously. We discuss update scheduling 
in streaming data warehouses, which combine the features of traditional data warehouses and data stream systems. In our setting, 
external sources push append-only data streams into the warehouse with a wide range of inter-arrival times.  While traditional data 
warehouses are typically refreshed during downtimes, streaming warehouses are updated as new data arrive. In this paper we 
develop a theory of temporal consistency for stream warehouses that allows for multiple consistency levels. We model the 
streaming warehouse update problem as a scheduling problem, where jobs correspond to processes that load new data into tables, 
and whose objective is to minimize data staleness over time. 
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1. Introduction 
 
The goal of a streaming warehouse is to propagate new 
data across all the relevant tables and views as quickly as 
possible. Once new data are loaded, the applications and 
triggers defined on the warehouse can take immediate 
action. This allows businesses to make decisions in nearly 
real time, which may lead to increased profits, improved 
customer satisfaction, and prevention of serious problems 
that could develop if no action was taken. 
 
Data warehouses integrate information from multiple 
operational databases to enable complex business analyses. 
In traditional applications, warehouses are updated 
periodically and data analysis is done off-line [3]. In 
contrast, real time warehouses [1], also known as active 
warehouses [4], continually load incoming data feeds to 
support time-critical analyses. For instance, an Internet 
Service Provider (ISP) may collect streams of network 
configuration and performance data generated by remote 
sources in nearly real time. New data must be loaded in a 
timely manner and correlated against historical data to 
quickly identify network anomalies, denial-of-service 
attacks, and inconsistencies among protocol layers. 
Similarly, online stock trading applications may discover 
profit opportunities by comparing recent transactions in 
nearly real time against historical trends. Banks may be 
interested in analyzing incoming streams of credit card 
transactions to protect customers against identity theft. 
Since the effectiveness of a real time warehouse depends on 
its ability to ingest new data, we study problems related to 
data staleness. In our setting, each table in the warehouse 
collects data from an external source. The arrival of a set of 
new data releases an update that seeks to append the data to 
the corresponding table. Since existing data are not 
modified, the processing time of an update is at most 
proportional to the amount of new data.           
 
Our first objective is to nonpreemptively1 schedule the 
updates on one or more processors in a way that minimizes 
the total staleness of all tables. Our first contribution 
answers a question implicit in [2] regarding the difficulty of 

this problem. We prove that even in the purely online 
model, any on-line non preemptive algorithm achieves 
staleness at most a constant factor times optimal, provided 
that no processor is ever voluntarily idle and provided that 
the processors are sufficiently fast.  
 
2. System Model 
 
2.1Warehousing Architecture 
 
Figure 1 illustrates a streaming data warehouse. Each data 
stream is generated by an external source, with a batch of 
new data, consisting of one or more records being pushed to 
the warehouse with period pi. If the period of a stream is 
unknown or unpredictable, we let the user choose a period 
with which the warehouse should check for new data. 
Examples of streams collected by an Internet Service 
provider include router performance statistics such as CPU 
usage, system logs, routing table updates, link layer alerts 
etc.An important property of the data streams in our 
motivating applications is that they are append-only,i.e., 
existing records are never modified or deleted. For example, 
a stream of average router CPU utilization measurement 
may consist of records with fields (timestamp, router name, 
CPU utilization) and a new data file with updated CPU 
measurement for each router may arrive at the warehouse 
every five minutes. [5] 

 
Figure 1: Stream data warehouse 

 
A streaming data warehouse maintains two types of tables: 
base and derived. Each table may be stored partially or 
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wholly on disk. A base table is loaded directly from a data 
stream. A derived table is a materialized view defined over 
one or more tables. Each base or derived table Tj has a user 
–defined priority pj and a time-dependent staleness function 
sj(τ) that will be defined shortly. Relationships among 
source and derived tables form a (directed and acyclic) 
dependency graph. For each table Tj, we define a set of its 
ancestor tables as those which directly or indirectly serve as 
its sources, and a set of its dependent tables as those which 
are directly or indirectly sourced from Tj. For example, T1, 
T2 and T3 are ancestors of T4, and T3 and T4 are dependents 
of T1.In practice, warehouse tables are horizontally 
partitioned by time so that only a small number of recent 
partitions are affected by updates [6][7]. 
 
2.2 Earliest Deadline First (EDF) 
 
EDF has been proven to be an optimal uniprocessor 
scheduling algorithms .This means that if a set of tasks is 
unschedulable under EDF, then no other scheduling 
algorithm can feasible schedule this task set. The EDF 
algorithm chooses for execution at each instant in the time 
currently active job(s) that have the nearest deadlines. The 
EDF implementation upon uniform parallel machines is 
according to the following rules, No Processor is idled while 
there are active jobs waiting for execution, when fewer then 
m jobs are active, they are required to execute on the fastest 
processor while the slowest are idled, and higher priority 
jobs are executed on faster processors. In Earliest Deadline 
First scheduling, at every scheduling point the task having 
the shortest deadline is taken up for scheduling. A task is 
schedule under EDF, if and only if it satisfies the condition 
that total processor utilization (Ui) due to the task set is less 
than 1. 

 
The Aim of this work is to provide a sensitivity analysis for 
task deadline context of multiprocessor system by using a 
new approach of EFDF (Earliest Feasible Deadline First) 
algorithm. In order to decrease the number of migrations we 
prevent a job from moving one processor to another 
processor if it is among them higher priority jobs. Therefore, 
a job will continue its execution on the same processor if 
possible (processor affinity). The result of these comparisons 
outlines some situations where one scheme is preferable over 
the other. Partitioning schemes are better suited for hard real-
time systems, while a global scheme is preferable for soft 
real-time systems. 

  
The final EDF – partitioned scheduling algorithm is 
following 
 
1. Sort the released jobs by the local algorithm 
2. For each job ji in sorted order 

a) If ji’s home track is available, schedule ji on its home 
track 

b) Else, if there is an available free track, schedule ji on the 
free track 

c) Else, scan through the tracks r such that ji can be 
promoted to track r 
i) If track r is free and there is no released job 

remaining in the sorted list for home track r, 
ii) Schedule ji on track r 

d) Else, delay the execution of ji 

 

3. Minimizing Staleness 
 
We call an algorithm eager, or work-conserving, if it leaves 
no processor idle while at least one pending update exists. 
We first state the rather-inscrutable Theorem 3.1, followed 
by an easy-to-read corollary, which implies that for any C < 
(v3 - 1)/2, there is a constant (dependent on C) such that the 
staleness of any eager algorithm is at most that constant 
factor times optimal, provided that each ai is at most Cp/t. 
 
Theorem 3.1. Fix p, t. For any   and d such that 0 <, d < 1, 
define C, d = vd (1 - )/v3 > 0. Given p processors and t 
tables, pick any a such that a/ [1 - a/ (p/t)] = C, d   p/t. Then 
the penalty incurred by an eager algorithm is at most (1 + a) 
2(1/ 4) (1/ (1 - d)) times LOW, provided that each     ai = a. 
 
Since LOW is a lower bound on the staleness achieved by 
any algorithm, even the optimal, prescient one, and penalty 
is an upper bound on the staleness achieved by any eager 
algorithm, the corollary implies the claimed competitiveness 
Proof: B be the set of batches in this run. For some batch Bi   
B, let ci be the length of the first update, di be the wait time, 
and bi be the total length of the batch, i.e., the sum of the 
lengths of its updates. Clearly, 
 
ci = bi = ci + di,                                          (1) 
 
since ci = bi is obvious and since ci + di is the duration in 
time from the start (not release) time of the first job in the 
batch till the update for the batch starts, and this duration is 
clearly at least the length bi of the batch. For the penalty of 
this batch, denoted by i, we take the square of the own time, 
i.e., the length ci of the first update plus the wait time di 
plus the processing time of the entire batch: 
 
i= [(ci+di) +abi] 2, by the definition of penalty      (2) 
 = (1+a) 2(ci+di) 2, by (1).                                      (3) 
 
Figure 2 illustrates the quantities bi, ci and di using the same 
example as that in Figure 1; in particular, we consider the 
batch consisting of updates arriving at times ri, 1 and ri, 2. 
 
Let A be the set of all updates. From the definition of 
LOW, each update i   A has a budget of a2 units, where ai 
is the length of update i. Our proof requires the use of a 
charging scheme.  A charging scheme specifies what 
fraction of its budget each update pays to a certain batch. 
Let us call a batch Bi tardy if ci < (ci + di) (where   comes 
from Theorem 3.1); otherwise it is punctual. Let us denote 
the corresponding sets by Bt and Bp respectively. More 
formally, a charging scheme is a matrix (vij) of nonnegative 
values, where vij shows the extent of dependence of batch i 
on the budget available to batch j, with the following two 
properties. 

Paper ID: 21091302 376



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 

Volume 2 Issue 9, September 2013 
www.ijsr.net 

 
Figure 2: A plot of the staleness of table i over time 

 
4. Conclusion 
 
In this paper, we studied the complexity of scheduling data-
loading jobs to minimize the staleness of a real time stream 
warehouse. We proved that any on-line non-preemptive 
algorithm that is never voluntarily idle achieves a constant 
competitive ratio with respect to the total staleness of all 
tables in the warehouse, provided that the processors are 
sufficiently fast. 
 
We solved the problem of scheduling updates in a real-time 
streaming warehouse. We projected the notion of averages 
staleness as a scheduling metric and presented scheduling 
algorithms designed to handle complex environment of a 
streaming data warehouse. We then proposed a scheduling 
framework that assigns jobs to processing tracks and also 
uses the basic algorithms to schedule jobs within a same.  
 
The main feature of our framework is the ability to reserve 
resources for short jobs that dften correspond to important 
frequently refreshed tables while avoiding the inefficiencies 
associated with partitioned scheduling techniques. Feature 
work is needed for choosing the right scheduling 
granularity when it is more efficient to update multiple 
tables together. 
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