
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
 www.ijsr.net

Performance Evolution of 16 Bit Processor in FPGA
using State Encoding Techniques

Madhavi Anupoju1, M. Sunil Prakash2

1M.Tech (VLSI) Student, Department of Electronics & Communication Engineering,
MVGR College of Engineering, Vizianagaram, Andhra Pradesh, India

2Professor, Department of Electronics and Communication Engineering,
MVGR College of Engineering, Vizianagaram, Andhra Pradesh, India

Abstract: In present days, there is a need for ever increasing high performance and low power devices, these devices need to meet
performance constraints like speed, area& power. This paper describes the area and speed constraints of a 16 bit processor with the
implementation of three state encoding techniques binary, one- hot & gray coding technique. The processor architecture is designed
using Verilog HDL, simulated on Modelsim and synthesized on Precision RTL synthesis tool & on XILINX ISE 12.1 for the Spartan3E
FPGA. From the synthesis reports it is observed that One-hot encoding would perform with speed 28% and Gray code would perform
with speed 14% more than binary encoding technique, but both of them require more area compared to binary encoding technique.

Keywords: FPGA, Precision synthesis, State encoding techniques, VLSI circuits, VERILOG hardware description language

1. Introduction

In today’s era of area optimization, high speed systems and
ubiquitous computing, the need for real-time embedded
systems is always on rise. These embedded systems must
operate within stringent requirements that are often at the
intersection of the conflict between speed and area.
Increasing the complexity of signal processing in embedded
and real time application that requires very high
computational power and area also optimizes the area. This
power can be achieved by high performance programmable
components like RISC processor.

This paper describes the different state encoding techniques
to increase the speed as well as to optimize the area. The
optimization of area can be achieved by implementing the
processor design on FPGA instead of ASIC. FPGAs are
usually slower than ASICs but have the ability to be re-
programmed in the field where the errors need to be
corrected and upgraded, flexibility and low-cost.

This paper deals with some of the state encoding techniques
namely, the One-Hot Code, Binary/Sequential Code, and
Gray Code state assignment. In the one –hot encoding one
flip-flop will be in on state, remaining all flip-flops will be in
off state in a state machine, so one-hot encoding reduces the
switching activity. No state decoding is necessary. One-hot
state machines are typically faster. In Gray encoding only
one flip-flop will transfer its state while the state changes so
it also reduces the switching activity, and reduces the delay.
Whereas binary encoding uses less no of flip-flops but the
encoding and decoding of information is more complex.
Binary encoding technique will occupy less amount of area
compared to other techniques, but the speed is less. The
design of the processor is carried out through VERILOG
hardware description language.

This paper has been organized as follows: in the next
section2 we will review the three state encoding techniques.
The next sections 3&4 dedicated to the review of design 16
bit RISC processor and implementation of the state encoding
techniques on processor, in these sections the simulation and
synthesis results were presented. Section5 deals with the
conclusion.

2. State Encoding Techniques

There are several methods of encoding the state assignments
when designing synchronous finite state machines (FSM)
according to [2] - [4]. The decision on which method to use
is a function of design constraints such as speed, area, power
consumption, and the type of programmable logic device
targeted to. This paper deals with some of the state encoding
techniques used in synchronous finite state machine: namely,
the One-Hot Code, Binary/Sequential Code, and Gray Code
state assignment [6]

2.1. One-Hot Encoding

In the one-hot encoding (OHE) only one bit of the state
variable is “1” or “hot” for any given state. All other state
bits are zero. (See Table 1) Therefore, one flip-flop (register)
is used for every state in the machine i.e. n states uses n flip-
flops. State decoding is simplified, since the state bits
themselves can be used directly to indicate whether the
machine is in a particular state. In addition, with a one-hot
encoded state machine, the inputs to the state bits are often
simply the functions of other state bits. Often times, no state
decoding is necessary, and state encoding can only require
the OR-in of state bits.

88

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
 www.ijsr.net

Table 1: An example of state Encoding for a 4 state Machine

State State variables
One-Hot code Binary code Gray code

S0 00001 000 000
S1 00010 001 001
S2 00100 010 011
S3 01000 011 010
S4 10000 100 110

2.1.1 Why use One Hot Code?
One-hot encoding (OHE) is better suited for use with the fan-
in limited and flip-flop-rich architectures of the higher gate
count field-programmable gate arrays (FPGAs), such as
offered by Xilinx, Actel, and others. OHE maps very easily
in these architectures. This is because OHE requires a larger
number of flip-flops. It offers a simple and easy-to-use
method of generating performance optimized state-machine
designs because there are few levels of logic between flip-
flops. One-hot state machines are typically faster. Speed is
independent of the number of states, and instead depends
only on the number of transitions into a particular state.

In some cases, the one-hot method may not be the best
encoding technique for a state machine implemented in an
FPGA. For example, if the number of states is small, the
speed advantages of using the minimum amount of
combinatorial logic may be offset by delays resulting from
inefficient CLB (configurable logic blocks) use, e.g. a Xilinx
device. This assignment allows the designer to create state
machine implementations that are more efficient in FPGA
architectures in terms of area and logic depth (speed). FPGA
have plenty of registers but the LUTs are limited to few bits
wide. One-hot increases the flip-flop usage (one per state)
and decreases the width of combinatorial logic. It makes it
easy to decode the next state, resulting in large FSMs. It
consumes less power.

2.2 Binary Encoding

In a binary encoding scheme, the relationship between the
number of state variables (q) and number of states (n) is
given by the equation:

q=log 2 (n)
With this formula, one can easily determine the minimum
number of state variables required for a binary encoded state
machine. Clearly, the number of flip-flops used is equal to
the number of state variables (q). In this technique, the states
are assigned in binary sequence where the states are
numbered starting from binary 0 and up.

2.2.1 Why binary encoding?
Binary encoding uses fewer flip-flops/registers than one-hot
encoding. For example, binary encoding requires only seven
(flip-flops) registers to implement a 100-state machine while
a one-hot encoding needs 100 flip-flops. Binary encoding
uses the minimum number of state variables (flip-flops) to
encode a machine since the flip-flops are maximally utilized.
As a result, it generally increases the amount of
combinatorial logic because more combinatorial logic is
required to decode each state. Therefore, binary encoding is

implemented more efficiently when using PLAs and CPLDs.
These devices have wider gates and a large amount of
combinatorial logic per register. It is usually the preferred
method when implementing machines that are fewer than 8
states. Their wide ‘AND-architecture’ allows any number of
state variable (bits) to be included in each product term with
no speed (or area) penalty.

The disadvantages of using a binary encoded FSM include
the fact that more than one bit can flip at any time and can
result in a glitch (hazard) especially in design of counters. It
also requires a more complex decoding logic to determine
the present state. If power consumption is an issue, then this
technique may not be suitable since the more registers/flip-
flop changes, the more power the device consumes.

2.3 Gray encoding

Gray code assignment is a state assignment in which
consecutive states codes only differ by one bit (adjacent). In
other words, only one flip-flop changes at a time when
changing consecutive states. In this encoding, the number of
flip-flops (register) used is also determined by:
 Number of state variables = number of flip-flops = log 2
(number of states)

2.3.1 Why gray code?
Gray code uses the same number of register (flip-flops) as
the binary coding technique and the decoding logic can also
be as complex if not more. Therefore, gray code assignment
is also ideal for PLA and CPLD applications since they have
wide gates and a large amount of combinatorial logic per
register. Gray code is highly recommended in PLA and
CPLD applications when designing for low power
requirement. One approach to low power design is to choose
a state assignment that diminishes (minimizes) the switching
activity of state transitions. The ideal case would be if only
one state variable changes in each possible transition. Gray
encoding has minimal switching between consecutive states.

3. RISC Processor Design

A 16-bit RISC microprocessor based on a simplified version
of the MIPS architecture was designed [1]. The processor
normally consists of control unit, data path unit and memory.
The processor has 16-bit instruction words and 16 general
purpose registers. The ISA of this processor consists of 16
instructions with a 4-bit fixed size operation code. The
instruction words are 16-bits long. The entire design of
processor is carried out using Verilog hardware description
language using [5]-[7].

89

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
 www.ijsr.net

Table 2: The instruction set architecture

Operation Opcode Destination
Reg

Source Reg Target Reg

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ADD 0 0 0 0 Rd Rs Rt
SUB 0 0 0 1 Rd Rs Rt
AND 0 0 1 0 Rd Rs Rt
OR 0 0 1 1 Rd Rs Rt

XOR 0 1 0 0 Rd Rs Rt

NOT 0 1 0 1 Rd Rs
SLA 0 1 1 0 Rd Rs
SRA 0 1 1 1 Rd Rs
LI 1 0 0 0 Rd Immediate

LW 1 0 0 1 Rd Rs
SW 1 0 1 0 Rs Rt
BIZ 1 0 1 1 Rs Offset
BNZ 1 1 0 0 Rs Offset
JAL 1 1 0 1 Rd Offset
JMP 1 1 1 0 Offset

JR 1 1 1 1 Rs

Here Rd defines the destination register address, Rs defines
the source register address, Rt defines the target register
address

3.1 Control Unit Design

The Control FSM has only three distinct states that
determine the operation of the processor: IDLE, FETCH and
EXECUTE. Here fetch and Execute is further divided into
two states, Fetch instruction state and Fetch operands state.
Similarly Execute state also divided into two parts. The state
diagram for the control unit is shown in fig1. The three states
are described below.

Figure 1: State diagram of control unit

IDLE: In idle state the current program count should be zero.
FETCH INSTRUCTION:

Part 1
 Retrieve instruction word from main memory
 Increment Program Counter and store in ALU Out

Part 2
 Write Incremented Program Count
 Load Operands into latches from Register File

Execute Instruction
Part 1
 Perform ALU Operation based instruction word and store

in ALU Out
 Move Memory Word into MDR for Load Word operation
 Write Data into Memory from Register File for Store

Word operation
Part 2
 Write ALU, IR (Immediate), or MDR data into Register

File
 Write new Program Count for Jump Operation or it Branch

taken

3.2 Data Path Unit

The data path unit includes the registers, program counter
,memory unit and an ALU capable of performing arithmetic
and logic operations on its operands, subject to the op-code
held in the instruction registers, memory unit will store the
data and instructions, program counter will hold the address
of the next instruction to be fetched. Registers which
contains the operand address. Depending on the control
signals produced by the control unit, the operation on the
data and instruction should be carried out.

Figure 2: Simulation of RISC Processor

Figure 3: Internal RTL Schematic OF RISC processor

90

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
 www.ijsr.net

4. Implementation of State Encoding
Techniques on Processor

The three state encoding techniques were applied on the
RISC processor design and simulated on MODELSIM,
synthesized on PRECISION RTL SYNTHESIS so as to get
the area and timing (speed) report. The synthesis reports of
the RISC processor with the implementation of state
encoding techniques are shown below.

4.1 Synthesis Reports

4.1.1 Binary Encoding Technique

a) Area Report
Device Utilization for 3S500EFG320

Resource Used Avail Utilization
IOs 22 232 9.48%

Global Buffers 1 24 4.17%
Function Generators 211 9312 2.27%

CLB Slices 106 4656 2.28%
Dffs or Latches 143 9776 1.46%
Block RAMs 2 20 10.00%

Block Multipliers 0 20 0.00%

b) Clock Frequency Report

Domain Clock Name Min Period (Freq)
ClockDomain0 clk 22.323ns (44.797 MHz)

4.1.2 Gray encoding technique:

a) Area Report
Device Utilization for 3S500EFG320

Resource Used Utilization
IOs 22 232 9.48%

Global Buffers 1 24 4.17%
Function Generators 257 9312 2.76%

CLB Slices 129 4656 2.77%
Dffs or Latches 143 9776 1.46%
Block RAMs 2 20 10.00%

Block Multipliers 0 20 0.00%

b) Clock frequency report

Domain Clock Name Min Period (Freq)

ClockDomain0 clk 18.622 (53.700 MHz)

4.1.3 One-Hot Encoding Technique

a) Area Report
Device Utilization for 3S500EFG320

Resource Used Avail Utilization

IOs 22 232 9.48%
Global Buffers 1 24 4.17%
Function Generators 318 9312 3.41%
CLB Slices 159 4656 3.41%
Dffs or Latches 199 9776 2.04%
Block RAMs 2 20 10.00%

Block Multipliers 0 20 0.00%

b) Clock frequency report

Domain Clock Name Min Period (Freq)

ClockDomain0 clk 16.057 (62.278 MHz)

5. Conclusion

The 16 bit processor was designed and the simulation results
for the processor was shown in fig.2 and the RTL schematic
is shown in fig.3. The three state encoding techniques binary,
gray and one-hot are implemented in the design of processor
respectively. The synthesis reports for the target device
xc3s500e-4fg320 (SPARTAN 3E) shows that One-hot
encoding takes 199 flip-flops, binary & gray coding takes
143 flip-flops each. For One-hot encoding the delay is
16.057ns, corresponds to maximum frequency
62.278MHz,for gray encoding the delay is 18.622ns,
corresponds to the maximum frequency 53.70MHz, for
binary coding the delay is 22.323ns , corresponds to the
maximum frequency of 44.797MHz. From the synthesis
reports it is observed that one-hot encoding uses 40% more
flip-flops but we can achieve 14% to 28% more speed than
gray and binary encoding techniques respectively. The gray
encoding require more area than binary encoding technique
but it works with high speed, so it is best suitable for PLD &
CPLD devices. One-hot encoding is best for FPGA devices
because FPGA contains plenty of flip-flops unused.

References

[1] Neeraj Jain, “VLSI Design and Optimized
Implementation of a MIPS RISC Processor using
XILINX Tool”, International Journal of Advanced
Research in Computer Science and Electronics
Engineering (IJARCSEE), Volume 1 Issue 10,
December 2012.

[2] E.V.Nagalakshmi, “Low Power Using Hardware
Description Languages for Reduction of Power
dissipation in VLSI systems”, Research Journal of Engg.
And Tech, Vol 5 issue1, ISSN0974-2824.

[3] Bipul C. Paul, Amit Agarwal, Kaushik Roy, “Low-
power design techniques for scaled technologies”
INTEGRATION, the VLSI journal 39 (2006) 64–89.

[4] N.Siva Sankara Reddy, “Minimization of Power
Dissipation in VLSI Circuits using Low Power
Techniques”, Asian Journal of Applied Sciences, 4(6):
657-662, 2011, ISSN1996-3343.

[5] J.Bhaskar “A Verilog HDL primer”, 3rd edition.
[6] Steve Golson, “State machine design techniques for

Verilog and VHDL”,1994
[7] Doulos, “Verilog Golden reference guide”, Version 1.0,

August 1996.

Authors Profile

Madhavi Anupoju is studying M. Tech VLSI in
MVGR College of Engineering. Vizianagaram
District, Andhra Pradesh, India. Her areas of interests
are VLSI design, embedded systems and
communications.

91

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 7, July 2013
 www.ijsr.net

Dr. M. Sunil Prakash did his B. Tech from Nagarjuna
University and M.E from Jadavpur University,
Kolkata. He is at present Professor in the Department
of Electronics and Communication Engineering and

Dean Training & Placements and PG Courses, MVGR College of
Engineering, Vizianagaram, Andhra Pradesh. He has done his
research under the guidance of Prof. G. S. N Raju in Department of
ECE, AU College of Engineering (A). He also presented 7 National
and 3 International papers in varies Conferences. He published 4
technical papers in National and International journals.His research
interests are Slot antennas, Antenna arrays and EMI/EMC. Dr.
Sunil Prakash is also a member of IEEE and life member of IETE,
ISTE, IE, ISOI and SEMCE (India).

92

