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Abstract: The convolution theorem is used to multiply matrices of two different sizes i.e. matrices in which the number of rows in the 
first matrix is not equal to the number of columns in the second matrix. In this study, the multiplication of 3*3 and 4*4 matrices was 
done using MPI.A 3*3 matrix was taken as a filter which was multiplied with different matrices of sizes as big as 1000*1000 and was 
implemented using OpenCL. Each element of the resultant matrix was calculated both parallelly and sequentially and their performance 
and efficiency were compared on the basis of execution time. 
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1. Introduction 
 
The process to calculate the multiplication of two matrices 
sequentially is lengthy. OpenCL & MPI allow us to calculate 
the product in an efficient manner. The time taken to execute 
the program is calculated both sequentially and parallelly 
and a graph of time versus size of the matrix is plotted. This 
graph depicts which method of execution is better. 
Mathematical representation of convolution, (convolution 
theorem), which gives the inverse Laplace transform of a 
product of two transformed functions, is discussed. 
Convolution filter, an application of convolution is also 
discussed.  
 
The paper examines the terminologies, benefits of open 
computing language (OpenCL), sequential and parallel paths 
of execution. It also discusses various OpenCL architecture 
models and procedures to calculate each element. The 
implementation of matrix multiplication using OpenCL, 
message passing interface (MPI), syntax of various 
commands used in MPI, and commands used for 
initialization are discussed. 
 
2. Theory 
 
2.1 Mathematical Representation 
 
For any x, y ϵ C(x* y)↔ X.Y1              (1) 

Convolution is a simple mathematical operation which is 
used by many common image processing operators. The 
convolution theorem specifies that the applying convolution 
is the same as a per-frequency multiplication in the 
frequency domain i.e. if the basis for both the convolution 
kernel and the image were to be changed to one that consists 
of simple sine and cosine functions by applying a discrete 
Fourier transform then we can take each of these 
components, multiply them and get the same result. This 
means that Fourier transform of the convolution kernel can 
be taken and the dampened frequencies can be seen (those 
having an amplitude<1), strengthen (>1) or leave unchanged 
(=1).A maximum amplitude value of one indicates that each 
of the different frequencies are independently attenuated, i.e. 
the frequency components in an image can be filtered out. 
 
The convolution of 2 functions f (t) and g(t) is denoted by  
(f * g) (t) 2 
Convolution theorem gives the inverse Laplace transform of 
a product of two transformed functions: 

L-1{F(s) G(s)} = (f * g)(t)                                               (2) 
 
Let f (t) and g (t) be two functions of t. The convolution of f 
(t) and g (t) is also a function of t, denoted by (f * g) (t). 
 
And is defined by the relation  
 
�� ∗ ����� = � ��� − �� ���� ���

��       (3) 
 
However, if f and g are both causal functions then f (t) and g 
(t) are written as f (t)u (t) and g (t)u (t) respectively, so that 
 

�� ∗ �� = � ��� − �� ��� − �� ���� ���� ��
�

��

= � ��� − �� ���� ��
�
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Because of the properties of the step functions (u(t – x) = 0 
if x>t and u(x) = 0 if x<0). 
 
2.2 Convolution Filter 
 
Convolution Filter is used to combine pixel data in a bitmap 
with data from neighboring pixels to produce a given result. 
A wide array of effects can be produced on a bitmap by 
having control at the pixel level. These include things like 
blurring, beveling, embossing, sharpening, and more. All are 
possible using Convolution Filter. Convolution Filter’s 
matrix does not have a set number of rows and columns. The 
number of rows and columns depend on the type and 
strength of the effect you are trying to achieve. Thus, 
Convolution Filter looks at each and every pixel in a source 
bitmap and as it does this, it uses the center value in the 
matrix as the value of the current pixel being manipulated. 
For example, in a 5 x 5 matrix, the center value is at (2, 2). 
The values from the matrix are multiplied to the surrounding 
pixels and the resulting values for all pixels are added to get 
the value for the resulting center pixel. The formula used on 
a 3 x 3 matrix convolution is: 
 
dst (x, y) = ((src (x-1,y-1)*a0 + src (x,y-1)*a1              (4) 
src(x, y+1) * a7 + src (x+1,y+1) * a8)/divisor) + bias    (5) 
 
Convolution Filter with a 3 x 3 matrix takes the pixel (x–
1, y–1) for the pixel located at (x, y) and multiplies it by the 
value in the matrix located at (0, 0), and then adds the pixel 
(x, y–1) multiplied by the value in the matrix at (0, 1), and 
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so on until all of the matrix values have been multiplied by 
the corresponding pixel value. (This is done for each color 
channel.) Finally, it finds out the sum, divides it by the value 
of divisor, and adds the value of bias. Obviously the larger 
your matrix, the longer this process takes. In image 
processing, many operators are based on applying some 
function to the pixels within a local window i.e. for finding 
the value of an output pixel, a window is centered at that 
location, and only the pixels falling within this window are 
used when calculating the value of that output pixel. 
 
When applying the convolution operator, the function we 
apply is merely a weighted average of the within-window 
pixels. The function can be defined by providing a 5x5 
weight- matrix if the window size is 5×5 pixels. So, at each 
pixel in the image, we place this 5x5 matrix and perform 
element-wise multiplications before summing up. This sum 
is deemed the output value at that location. If we let x be the 
image we want to filter, y the corresponding output image, 
and let h be the convolution filter matrix, we have: 
 
Y=h*x   (6) 
 
The convolution operator is linear, i.e. we get the same 
result if we perform the convolution on two separate images 
and sum their results as if we were to sum the two images 
before we apply the convolution. 
 

��1,1� = � � ���, ��. ��1 − �, 1 − ��
�

����

�

����

 

 =
��0,0�. ��1,1� � ��1,0�. ��0,1� �
                     ��2,0�. ��−1,1� � ��0,1�. ��1,0� �
                     ��1,1�. ��0,0� �  ��2,1�. ��−1,0� 
                  +x �0,2�. ��1, −1� � ��1,2�. ��0, −1� �
                     ��2,2�. ��−1, −1� 
 
Hence, in convolution 2D with M×N kernel, it requires 
M×N multiplications. 
 

 
 

Figure 1: Multiplication of matrix procedure 
 

Let us assume that the size of filter matrix h, is 3x3, and its 
values are a, b, c, d, e, f, g, h, i 

 

 
Figure 2: Depiction of finding an element of output matrix 

 

 
Figure 3:  Relation between source and destination pixel 

 
In image filtering you should have a 2D filter matrix and the 
2D image. Then you can take the sum of products for every 
pixel of the image. Each product is the color value of the 
current pixel or a neighbor of it, with the corresponding 
value of the filter matrix. The center of the filter matrix has 
to be multiplied with the current pixel and the other elements 
of the filter matrix with corresponding neighbor pixels. This 
operation where you take the sum of products of two 2D 
functions, where you let one of the two functions move over 
every other element of the other function is called 
Convolution or Correlation. The difference between 
Convolution and Correlation is that for Convolution you 
have to mirror the filter matrix. But usually it’s symmetrical 
anyway so there is no difference. 
 
The 2D convolution operation requires a 4-double loop, so it 
isn’t extremely fast, unless you can use small filters. Here 
we will usually be using a 3*3 or 5*5 filters. 
 
There are a few rules about the filter: 
a) Size: Its size has to be uneven, so that it has a center 

element, for example 3x3, 5x5 and 7x7. 
b) Sum equal to 1: It doesn't have to, but the sum of all 

elements of the filter should be 1 if you want the 
resulting image to have the same brightness as the 
original. 

c) Sum greater than 1: If the sum of the elements is larger 
than 1, the result will be a brighter image. 

d) Sum smaller than 1: If it’s smaller than 1, a darker image.  
e) Sum is equal to 0: If the sum is 0, the resulting image 

isn't necessarily completely black, but it'll be very dark. 
 
The image has finite dimensions. So for calculating a pixel 
on the left side, there are no more pixels to the left of it 
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while these are required for the convolution. Either the value 
0 can be used here, or it can be wrapped around to the other 
side of the image. The wrapping around is preferred because 
it can easily be done with modulo division.  
 
The resulting pixel values after applying the filter can be 
negative or larger than 255, if that happens then the resulting 
values can be truncated so that values smaller than 0 are 
made 0 and values larger than 255 are set to 255. The 
absolute value can also be taken for negative values. The 
convolution operation becomes a multiplication instead in 
the Fourier Domain or Frequency Domain, so it is faster. In 
the Fourier Domain, much more powerful and bigger filters 
can be applied faster, especially if the Fast Fourier 
Transform is used. It is not yet feasible to use image filters 
for real time applications and games but they are useful in 
image processing. Digital audio and electronic filters work 
with convolution as well, but only in 1D. 
 
2.3.   OpenCL Basics 
 
The Open Computing Language (OpenCL) is an open and 
royalty-free parallel computing API that enables GPUs and 
other coprocessors to work concurrently with the CPU, thus 
providing additional raw computing power.  
 
2.3.1 Benefits of OpenCL 
A primary benefit of OpenCL is considerable acceleration in 
parallel processing. OpenCL uses the resources available in 
the system by taking all computational resources, such as 
multi-core CPUs and GPUs, as peer computational units and 
correspondingly allocating different levels of memory. 
OpenCL also complements the existing OpenGL 
visualization API by sharing data structures and memory 
locations without any copy or conversion overhead. A 
secondary benefit of OpenCL is that it is cross-vendor 
software portable. This low-level layer draws an explicit line 
between hardware and the upper software layer. All the 
hardware implementation specifics, like drivers and runtime 
are made invisible to the upper-level software programmers 
through the use of high-level abstractions. This allows the 
developer to use the best hardware without having to 
reshuffle the upper software infrastructure. The change from 
proprietary programming to open standard also helps in the 
acceleration of general computation in a cross-vendor 
fashion. 
 
2.3.2 Open CL Architecture 
 
(a) The Platform Model 
The OpenCL platform model describes a host connected to 
one or more OpenCL devices. The fig 4 given below shows 
the platform model consisting of one host with multiple 
processing elements. A host is any computer which consists 
of a CPU and a standard operating system. An OpenCL 
device is a collection of one or more compute units(cores) 
and such devices can be GPU, DSP, or a multi-core CPU. A 
compute unit consists of one or more processing elements. 
The processing elements execute instructions as SIMD 
(Single Instruction Multiple Data) or SPMD (Single 
Program, Multiple Data). SPMD instructions are executed 
on general purpose devices like CPUs whereas SIMD 

instructions need a vector processor such as a GPU or vector 
units in a CPU. 
 

 
Figure 4: The Platform Model 

 
(b) The Execution Model 
The OpenCL execution model consists of two components: 
Kernel and Host Programs. Kernels are the basic unit of 
executable code that run on one or more OpenCL devices. 
Kernels are like a C function which can be data or task 
parallel. The host program defines devices context, and 
queues kernel execution instances using command queues. It 
is executed on the host system. Kernels are queued in-order, 
but can be executed in-order or out-of-order. 
 
Kernel: An index space is defined when a kernel is queued 
for execution by the host program. Each independent 
element of execution in this index space is called a work-
item which executes the same kernel function but on 
different data. The N-dimensional index space can be N=1, 2 
or 3. Work-items can be grouped together into work-groups. 
Local index space defines the size of work-group. All work-
items in the same work-group are executed together on the 
same device. This allows work- items to share local memory 
and synchronization. 
 
Host Program: The host program sets up and manages the 
execution of kernels on the OpenCL device through use of 
context. Using OpenCL API, the host can create and 
manipulate the context by including the following resources: 
 
• Devices: A set of OpenCL devices used by the host to 

execute kernels. 
• Program Objects: Objects that implement a kernel or 

collection of kernel. 
• Kernels: The specific OpenCL functions that execute on 

the OpenCL device. 
• Memory Objects: A set of memory buffers common to 

the host and OpenCL devices. 
 

 
Figure 5: The Execution Model 
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(c)  Memory Model 
The OpenCL memory models define four regions of 
memory accessible to work-items when a kernel is executed. 
The figure given below shows the region of memory 
accessible by host and the compute device.
It is a region in which all work-items and work
read and write access on both the compute device and the 
host. This region of memory can be allocated only by the 
host during runtime. 
 
• Constant Memory: It is a region of global mem

stays constant throughout the execution on the kernel. 
Work-items have only read access to this region, while 
the host is permitted both read and write access.

• Local memory: It is a region of memory used for data
sharing by work-items in a work-group. All work
in the same work-group have read and write access.

• Private memory: It is a region that can be accessed by 
only one work-item. 

 
In most cases, host memory and compute device memory are 
independent of one another. To ensure memory managem
between host and the compute device, this process en
queues read/write commands in the command queue.
 

Figure 6: The Memory Model
 
3. Methodology 
 
3.1 Basic Multiplication Method 
 
‘a’ is an m*n matrix, with elements x0,x
another n*m matrix with elements y0
product is:  
                                   �� = ∑ �����

���
��� (7) 

 
3.1.1 Sequential Way 
for (i = 0; i<m; i ++) 
{ 
 Y[i]=0; 
/*for each element of the row and each element of x*/
for (j=0; j<n; j ++) 
 Y[j] + = a[i][j] 56 * x[j]; 
} 
 
3.1.2 Parallel Way 
We divide the iteration of the outer loop among the threads. 
To compute y [0], process 0 need to execute the code:
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,x1,x2 ….xn-1& ‘d’ is 
0,y1,y2 ….yn-1. Dot 

/*for each element of the row and each element of x*/ 

We divide the iteration of the outer loop among the threads. 
To compute y [0], process 0 need to execute the code: 

Y[0]=0; 
for(j=0;j<n;j++) 
Y [0]+=a [0][j]*x[j]; 
 
3.2 Implementation 
 
3.2.1 OpenCL Implementation
Convolution is the treatment of a matrix by another one 
called the kernel. The convolution matrix filter uses the 
image to be treated as the first matrix. The image is a bi
dimensional collection of pixels in rectangular coordinates. 
Only 3*3 matrices will be considered as they are mostly 
used and are enough for all the effects we want. The second 
matrix has a variable size. Then the matrices are converted 
to 1-D array and the two array of numbers,   which are 
generally of different sizes bu
multiplied. It produces a third array of numbers of the same 
dimensionality. This can be used in image processing to 
implement operators whose output values are simple linear 
combinations of certain pixel values.
 
3.2.2 Message Passing Interface (MPI)
In this code we multiply an n*n matrix with an m*m matrix 
using convolution theorem. m+2 processes are there that 
compute each elements of final matrix in parallel.
 
(1)  Initialization 
MPI_Init (&argc,&argv):This function 
message passing interface by passing arguments on 
command line. They are 0 by default.
MPI_Comm_size(MPI_COMM_WORLD,&totalnodes):Thi
s function gives total number of processes. First parameter is 
communicator. Second parameter contains the t
of processes. 
MPI_Comm_rank(MPI_COMM_WORLD
function gives the rank of the process, which is 1 less than 
total number of processes. 
 
(2)  Steps 
Two matrices are input in process 0 of rank 0. Then the size 
of padded matrix c is sent to process 1 using MPI_Send 
method. This initializes all elements of c to 0, which is 
(m+2) * (m+2) matrix. This is received by the 0
MPI_Recv method, which adds the elements of matrix b to 
matrix c. Hence only outer elements of c are 0.
m*m size output matrix d using same procedure as given 
above. Then find out each element of the resultant matrix. 
First send the size of the output matrix & padded matrix 
(using MPI_Send) to all the processes. Different processes 
calculate the elements of output matrix and return the result 
to process 0, using MPI_Recv. 
That is how output will be received from m processes 
concurrently. 
 
(3)  Commands Syntax 
 
(a)MPI_Send() 
It performs a blocking send. 
Synopsis:intMPI_Send(void *buf, 
MPI_Datatypedatatype, intdest, int
tag,MPI_Commcomm) 
Input Parameters:  
buf: initial address of send buffer (choice)
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count: number of elements in send buffer (nonnegative 
integer) 
datatype: datatype of each send buffer element (handle) 
dest: rank of destination (integer) 
tag:message tag (integer) 
comm.: communicator (handle) 
 
(b)MPI_Recv() 
It is a blocking receive for a message. 
Synopsis: intMPI_Recv(void *buf, int count,  
MPI_Datatypedatatype, int source, inttag,MPI_Comm 
comm, MPI_Status *status) 
Output Parameters: 
buf: initial address of receive buffer (choice) 
status: status object (Status) 
Input Parameters 
count: maximum number of elements in receive buffer 
(integer) 
datatype: datatype of each receive buffer element (handle) 
source:rank of source (integer) 
tag: message tag (integer) 
comm: communicator (handle) 
 
(c) MPI_Finalize() 
This function tests if work of a process is finished.   
 
4. Analysis 
 
4.1 Sequential Execution 
 

Table 1:Sequential execution of OpenCL code 
 
Matrix Dimension Kernel Execution Program Execution 

4*4 28.532 0.331 
 27.626 0.305 
 24.908 0.339 

10*10 36.231 0.892 
 38.043 0.636 
 36.684 0.589 

50*50 554.790 1.526 
 367.293 1.446 
 432.056 1.576 

100*100 1389.464 2.192 
 1803.404 3.200 
 1526.689 3.213 

500*500 31083.139 55.309 
 32685.008 53.880 
 45005.403 53.945 

1000*1000 127867.354 227.709 
 136517.536 174.916 
 126118.296 198.392 

 

 
 

Figure 7: A simple line graph showing relation between 
Kernel execution time and size of matrix in sequential and 

parallel execution 
4.2 Parallel Execution 
 
Table 2: Parallel execution of OpenCL code 
 

Matrix Kernel Execution Program Execution 
4*4 77.897 0.381 

 36.684 0.301 
 66.575 0.368 

10*10 50.724 0.670 
 44.836 0.666 
 47.100 0.367 

50*50 294.831 0.835 
 224.633 1.016 
 253.618 1.084 

100*100 885.851 1.858 
 911.665 2.551 
 893.550 3.102 

500*500 37559.453 50.396 
 21312.962 51.545 
 17800.806 51.337 

1000*1000 82606.974 165.967 
 83834.304 127.658 
 80695.361 126.406 
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Figure 8: A simple line graph showing relation between 
Program execution time and size of matrix in sequential and 

parallel execution. 
 
Above estimates show that for matrices of small sizes such 
as 4*4 and 10*10 sequential execution takes less time, 
whereas for large size matrices such as 500*500 and 
1000*1000, parallel execution takes less time than compare 
to sequential execution. 
 
5. Conclusion 
 
Executing matrix multiplication for matrices of small sizes 
sequentially rather than parallelly takes less time. With 
increasing size of the matrices, it takes less time to execute 
the code parallelly rather than sequentially, therefore parallel 
execution of code is more efficient for data of large sizes. 
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