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Abstract: Wireless Sensor Networks (WSNs), is one of the most emerging technologies in recent years. Target tracking and location 
estimation is one of the most important tasks in wireless sensor networks. Target tracking using Bayesian filtering technique doesn’t 
concentrate much on filtering of noise in the signals. This reduces the accuracy of the target information. This paper addresses a 
Kalman filtering technique with prediction-correction step to remove the noise from a signal and to generate optimal estimate of desired 
quantities with the given set of measurements. Also it concentrates on location estimation of the sensor nodes in the network. The 
proposed Kalman filtering technique supports to solve the problem of trajectory estimation. Simulation results show that minimizes the 
energy consumption, missing rate, and localization error of the sensor nodes in the network.  
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1. Introduction 

A wireless sensor network is a collection of sensing nodes 
organized in a desired area that form a network with 
wireless links. They are capable of detecting, measuring, 
collecting, and processing the data they observe. Wireless 
Sensor Networks consists of several tiny sensor nodes that 
are deployed in any physical environment. These sensor 
nodes have been used to play a major role in the 
applications of industrial monitoring, agriculture, area 
monitoring, environmental/earth monitoring, structural 
monitoring, passive localization and tracking in the recent 
years. These applications require target tracking for the 
events of concern that takes place in an environment. Target 
tracking in WSNs has several merits like the (i) qualitative 
and fidelity observations (ii) processing signal accurately 
and timely and (iii) increased system robustness and 
tracking accuracy. The major challenges faced in target 
tracking algorithm is the consideration of the transaction or 
the tradeoff between the tracking accuracy and network 
resources such as energy, bandwidth and communication or 
computation. However the sensed data are futile without the 
sensor location information, mainly when used for tracking 
or other purposes [6]–[9]. If the sensors are limited to a 
small area exactly then the moving target object can be 
trailed in a better fashion. This location information of 
sensors is well watched by the moving target in the network. 
That is, sensor localization and target tracking balance each 
other. 

A wide-ranging stipulation of SLAT is considered in our 
paper. The inhabitant location of sensors is distributed 
randomly roughly around their deployment points due to the 
extensively varying environment aspects and deployment 
errors. After the sensors are deployed, it exchanges data 
with the nearby sensors that lie within their communication 

ranges ��. A set of data observation is thus collected and 
used to localize them in prior, improving the coarse a priori 
position information. The SLAT procedure defines the time 
at which a mobile target �� enters into the Wireless Sensor 
Network. The mobile targets randomly move about through 
the environment without any restriction on its path or 
velocity. At the sampling instant t, only the sensors that 
sense the presence of the target �� can form an activate 
cluster �� for additional signal processing. The temporal 
observation between the target and each activated sensor is 
integrated in order to modernize the target temporal 
assessment. With regard to the activated sensor, the 
temporal observation of the target is used in combination 
with the static observation set that is stored during the 
prelocalization phase to refine its location estimation. 
Hence, the sensors that have detected the target are localized 
together with the tracking of the target. 

The proposed Kalman filtering for concurrent localization 
and tracking algorithm provides an well-organized 
computational way to calculate approximately the state of a 
process, in a way that reduces the average of the squared 
error. The filter is extremely powerful in numerous aspects: 
it supports estimations of past, present, and even future 
states, and it can do so even when the exact temperament of 
the modelled system is indefinite.  

The remainder of this paper is organized as follows. In 
Section II, we summarize the related work. In Section III, 
the system model is defined. The Kalman Filtering 
technique is described in detail in Section IV. The 
performance of the proposed Kalman Filtering method is 
evaluated through the simulations in Section V. Section VI 
concludes this paper. 

2. Related Work 
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In the earlier work, the interdependent target tracking [2] 
that provides range measurements between the sensors and 
the target, sensor location estimations and that of the target 
are interdependently enhanced. This work relies on three 
aspects: firstly, the algorithm operates on a fully 
decentralized cluster technique; secondly, a general state 
evolution model is proposed in order to describe the target 
and activated sensors, since a priori information of the target 
motion is not obtainable at hand finally, the variational 
method further mitigates the communication overhead. 
Simultaneous Localization and tracking [11] with Laplace 
approximation avoids computational intricacy. 
Measurement noise is involuntarily averaged out improving 
the localization and the tracking precision in high-traffic 
region. The filtering framework integrates measurements in 
petite batches, providing online estimates of almost all the 
locations, calibration parameters and their uncertainties. But 
this algorithm is put into operation in a centralized 
implementation and it requires multiple hops to transmit 
data to the central computer. Hence, the energy and 
bandwidth cost of centralization increases. Simultaneous 
localization, mapping and moving object tracking [3] 
involves both simultaneous localization and mapping in 
dynamic environments. It is also involved in detecting and 
tracking these dynamic objects. Two algorithms are 
described in order to combine SLAM with widespread 
objects as well as with the detection and tracking of objects 
that move. It is computationally challenging and normally 
infeasible. With regard to the sensor localization crisis, 
sensor nodes do not require support from other positioning 
systems such as the Global Positioning System (GPS) in this 
technique. Node localization along with GPS free 
localization is known as the Matrix transform-based Self 
Positioning Algorithm MSPA [4]. This is where the job is to 
exploit the distance information between nodes to decide on 
the coordinates of static nodes in 2D or 3D space. One 
important issue in GPS-free localization algorithms is the 
basic performance impact of several parameters. RSS-based 
cooperative localization [5] method that approximates 
unknown coordinates of sensor nodes in a network. A co-
operative localization technique that adds in estimations 
from multiple fixed reference nodes is open to presentation 
in order to enhance the precision of the localization. A 
strong correlation is integrated in analyzing the comparative 
positions between two sensor nodes by making use of the 
received signal strength indication (RSSI) model. Power 
Adaptive Localization Algorithm [6] utilizes the RSS data 
from the beacons or the neighbouring nodes to understand 
the position of the node concerned without requiring any 
additional hardware instruments. It cannot be frankly 
applied to the sensor networks with numerous transmit-
power levels. In the Beacon-less location discovery method 
[7], each sensor initially discovers the number of its 
neighbours from each group. This is the surveillance of a 
sensor. Using this surveillance data, a sensor thus estimates 
a location which is based on the principle that the estimated 
location should make the best use of the probability of the 
observation. KPS relies on the sharing of the node 
exploitation. Therefore, once a node moves, the distribution 
cannot be sustained. KPS can only be used in an immobile 
sensor network. Locations of deployment points are vital.  

3. Kalman Filtering For Accurate Target 
Tracking And Localization 

Problem Definition 

The preliminary assignments of sensors are deployed 
arbitrarily in the area of their deployment points. The final 
inhabitant location �� of sensor i is supposed to be Gaussian 
disseminated in the region of its deployment point ���with 
exactness �� i.e. ��~�(���, ��). Subsequent to the 
deployment phase, the sensor i exchanges its information 
with its neighbouring sensors in the transmission range ��, 
which is indicated by the red dashed circle in Fig. 1 [1]. To 
advance the coarse a priori information which is on the 
sensor location, a prelocalization phase is commenced by 
adding in these dimensions, i.e.  

   ��������,�� ∝ �(���, ��)           �(��,�|��).  (1) 
              ���� − ���� ≤ �� 

The supplementary specific information of sensor location 
is thus made available with this prelocalization phase. Fig. 1 
indicates the distributive cluster base model to decrease the 
bandwidth and energy consumption. Once the target comes 
into the WSN, the cluster of sensors �� is triggered. Only the 
sensors which sense the presence of the target �� form an 
activated cluster �� . As shown in Fig. 1, sensors that sense 
the target �� are in the blue dotted circle with the center ��  
and the radius ��. The range of a cluster is resolved by the 
association between the communication range ��  and the  

sensing range ��. For localization accuracy and energy 
efficiency, the communication range is defined as double 
the sensing range (��= 2��), which assures that a single 
cluster is formed at each moment and the communication in 
the activated cluster is within a single hop. 

The activated sensors broadcast their remaining energy level 
to all other sensors in the cluster. The sensor with the 
maximum residual energy is chosen as the cluster head 
(CH) to take control of signal processing. The other 
clustered detecting sensors then transport their observations 
to the CH. These observations comprises of the subsequent 
two parts which are: 1) the temporal observation amongst 
the clustering sensors and the target, i.e.��

�,� = {��
�,�}∀�� ∈

��, which is included to keep informed about the target 
temporal estimation, and 2) the static observation that is 
stored during the prelocalization phase, which is integrated 
with the temporal observation             �� = {{ ��,�}��

�,�} 
where �� is the number of activated clustering sensors, to 
further refined their position estimations. Hence, 
approximations of the target and the detecting sensor 
locations are concurrently updated in the CH based on these 
observations.  
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Figure 1: SLAT scenery [1] 

The prediction phase utilizes the state estimate from the 
earlier sampling moment to create an estimate of the state at 
the existing instant according to  

p(Xt|Z1:t−1)=� �(��|�� − 1)�(�� − 1|�1: � − 1) ��� −
1.                            

In prediction phase, with the prior position of the target ���� 
and the sensors in activated cluster {��}i=1 to mt the 
sensors that sense the next location of the target ��. After 
the cluster is activated, the sensors that predict the next 
location of the target are compared with previous target 
position and sensed information from the cluster. 

Fig 2 illustrates the corrector-predictor step of the Kalman 
filtering technique. In the prediction step involves the time 
update being taken where the one-step ahead prediction of 
observation is computed. 

 

Figure 2: Schematic illustration of Kalman filter’s update 
as a predictor-corrector 

In the correction step, the measurement update is observed 
where the correction to the estimate of current state is 
computed i.e. the measurement update regulates the 
projected estimate by a genuine measurement at that time. 

(i)The time update equations are accountable for 
projecting forward the current state as well as the error 

covariance estimates to gain the a priori estimates for the 
next time step.  

(ii)The measurement update equations are responsible 
for the feedback i.e. for incorporating a new measurement 
into the a priori estimate to obtain an improved a posteriori 
estimate. 

 

Figure 3: Architecture Diagram 

In the update phase, measurement data at the current instant 
is used to refine this prediction to appear at a new and more 
accurate state estimate. 

           p(Xt|Z1:t) =     �(��|��)�(��|��:���)
�(��|��:���)

.  (2)                                        
 
Where, 
 
p(Zt|Z1:t−1) =� �(��|��)�(��|�1; � − 1)���. 
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Figure 4: Flowchart of Kalman Filtering. 

In update phase, the predicted location �� and the sensed 
observations {��,�}, {��

�,�} are updated. The cluster is formed 
based on the updated information with the neighbouring 
sensors of the predicted next target location. 
 
The initial task for the duration of the measurement update 
is to calculate the Kalman gain. After each time and 
measurement update pair, the process is recurred with the 
previous a posteriori estimate that is used either to project or 
to predict the new a priori estimates. 

4. Simulation Results 

Fig 5 indicates the comparison of SLAT, DVaSLAT and 
Kalman filter models’ localization error. Kalman filter that 
shows the minimized localization error when compared 
with SLAT and DVaSLAT model.  

 

 

 

Figure 5: No of objects vs location error 

Fig. 6 demonstrates the comparison of SLAT, DVaSLAT 
and Kalman filter models’ missing rate. The proposed 
Kalman filter model shows the minimum level missing rate 
compared to SLAT and DVaSLAT models. 

 
Figure 6: No of sensors Vs Missing Rate 

5. Conclusion 

Simultaneous Sensor Localization and Target Tracking in 
Wireless Sensor Networks using Kalman Filtering have 
been proposed in the context of WSN. Without any prior 
information on the target movement, the DVaSLAT 
algorithm aims at incessantly updating and enhancing the 
estimates of the activated sensor locations and the target 
trajectory. To reduce the resource expenditure in WSNs, the 
DVaSLAT algorithm is operated on a fully distributed 
cluster technique. That is, only the sensors that have 
detected the target are triggered to form a cluster to process 
data. The variational method permits an implicit 
compression of the exchanged data between clusters, which 
significantly decreases the inter cluster communication. To 
conclude, as the target freely moves in WSNs, a large 
number of range measurements are created, which makes it 
possible for both the activated sensors’ localization and the 
target tracking. To add noise filtering to the DVaSLAT 
algorithm, Kalman filtering technique is used. Simulation 
results have shown that the accuracy of tracking the target is 
obtained at an increased level. 
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