
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013
www.ijsr.net

Cluster Based Load Rebalancing in Clouds

S. Aravind Kumar1, R. Mangalagowri2

1Department of Computer Science, SRM University, Kattankulathur, India

aravind.cse09@gmail.com

2Department of Computer Science, Faculty of Engineering and Technology SRM University, Kattankulathur, India

mangalcse@yahoo.com

Abstract: Nowadays most of the cloud applications process large amount of data to provide the desired results. Data volumes to be
processed by cloud applications are growing much faster than computing power. This growth demands on new strategies for processing
and analysing the information. The project explores the use of Hadoop MapReduce framework to execute scientific workflows in the
cloud. Cloud computing provides massive clusters for efficient large computation and data analysis. In such file systems, a file is
partitioned into a number of file chunks allocated in distinct nodes so that MapReduce tasks can performed in parallel over the nodes to
make resource utilization effective and to improve the response time of the job. In large failure prone cloud environments files and
nodes are dynamically created, replaced and added in the system due to which some of the nodes are over loaded while some others are
under loaded. It leads to load imbalance in distributed file system. To overcome this load imbalance problem, a fully distributed Load
rebalancing algorithm has been implemented, which is dynamic in nature does not consider the previous state or behaviour of the
system (global knowledge) and it only depends on the present behaviour of the system and estimation of load, comparison of load,
stability of different system, performance of system, interaction n between the nodes, nature of load to be transferred, selection of nodes
and network traffic. The current Hadoop implementation assumes that computing nodes in a cluster are homogeneous in nature. The
performance of Hadoop in heterogeneous clusters where the nodes have different computing capacity is also tested.

Keywords: Hadoop, Map Reduce, cloud computing, clusters.

1. Introduction

Cloud computing is a relatively new way of referring to the
use of shared computing resources, and it is an alternative to
having local servers handle applications. Cloud computing
groups together large numbers of computer servers and other
resources and typically offers their combined capacity on an
on-demand, pay-per-cycle basis without sophisticated
deployment and management of resources. The end users of a
cloud computing network usually have no idea where the
servers are physically located, they just spin up their
application and start working. This flexibility is the key
advantage to cloud computing, and what distinguishes it from
other forms of grid or utility computing and software as a
service (SaaS). The ability to launch new instances of an
application with minimal labor and expense allows
application providers to scale up and down rapidly, recover
from a failure, bring up development or test instances, and
roll out new versions to the customer base.

Distributed file systems are key building blocks for cloud
computing applications based on the MapReduce J. Deanet
all [1] programming paradigm. MapReduce programs are
designed to compute large volumes of data in a parallel
fashion. This requires dividing the workload across a large
number of machines. Hadoop provides a systematic way to
implement this programming paradigm. The computation
takes a set of input key/value pairs and produces a set of
output key/value pairs. The computation involves two basic
operations: Map and Reduce. The Map operation, written by
the user, takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library groups
together all intermediate values associated with the same
intermediate Key #1 and passes them to the Reduce function.

The Reduce function, also written by the user, accepts an
intermediate Key #1 and a set of values for that key. It
merges together these values to form a possibly smaller set of
values. Typically just an output value of 0 or 1 is produced
per Reduce invocation. The intermediate values are supplied
to the user's Reduce function via an iterator (an object that
allows a programmer to traverse through all the elements of a
collection regardless of its specific implementation.

The proposed fully distributed load rebalancing algorithm
can be integrated with the Hadoop [3] Single-Node Cluster or
Multi-Node Cluster to enhance the performance of the
NameNode in balancing the loads of storage nodes present in
the cluster. Figure 1 represents a typical Single-Node Hadoop
Cluster. The three major categories of machine roles in a
Client machines, Masters Nodes, and Slave nodes. The
Master nodes oversee the two key functional pieces that
make up Hadoop: storing lots of data (HDFS), and running
parallel computations on all that data (Map Reduce). The
Name Node oversees and coordinates the data storage
function (HDFS), while the Job Tracker oversees and
coordinates the parallel processing of data using Map
Reduce. Slave Nodes make up the vast majority of machines
and do all the dirty work of storing the data and running the
computations. Each slave runs both a Data Node and Task
Tracker daemon that communicate with and receive
instructions from their master nodes. The Task Tracker
daemon is a slave to the Job Tracker, the Data Node daemon
a slave to the Name Node. Client machines have Hadoop
installed with all the cluster settings, but are neither a Master
nor a Slave. Instead, the role of the Client machine is to load
data into the cluster, submit Map Reduce jobs describing how
that data should be processed and then retrieve or view the
results of the job when it’s finished. In smaller clusters (~40
nodes) you may have a single physical server playing
multiple roles, such as both Job Tracker and Name Node.

83

 W
op

In
re
fo
ob
po
ex

2

2.

T
N
nu
w
a
fu
pa
a
ch
ch
(/

T
pe
th
[1

In
as

Inter

With medium
perating on a

Figure1: H

n this paper
ebalancing pr
or large-scale
bjective is to
ossible amon
xcessive numb

. Our Pro

.1 DHT Arc

The chunk ser
Network [8];

umber of fix
with a unique c

globally kno
unction retur
athname strin
unique ident

hunk index. F
hunks of file
/user/tom/tmp

To discover a

erformed amo
he average num
1], [2].

n summary, co
s follows:
DHTs guara
hosted chunk
node joins,
immediately
manage, whic
self-heal in
provisioning
In typical DH
(log n) nodes
discovering th
parallel.
The DHT
management
specifies the

rnational J

to large clust
single server

Hadoop Server

r, we are in
roblem in dis
e, dynamic a
 allocate the

ng the nodes
ber of chunks

oposal

chitecture

rvers in our p
in such netw

xed-size chunk
chunk handle
own hash fun
rns a unique
g and a chunk
tifier for a giv

For example, th
“/user/tom/tm

/a.log, 0) and

a file chunk,
ong the availab
mber of node

ontributions o

antee that if
ks are reliably

then it allo
precede the jo
ch enables ch

our propo
and managem

HTs lookups t
s; the lookup l
he ‘l’ chunks

network is
in our prop

locations of

Journal of S

ters you will o
machine.

r roles in Sing

nterested in
tributed file
and data-inte
chunks of fi
such that no
.

proposal are o
works file are
ks, and each
(or chunk ide

nction such a
e identifier
k index. The h
ven file’s pat
he identifiers
mp/a.log” are
SHA1 (/user/

 the DHT lo
ble storage no
s visited for a

f DHT Archit

a node leave
y migrated to
ocates the c
oining node f

hunk servers to
osal,andsimpli
ment.
take a modest
latency can be
of a file can a

transparent
posal. While
chunks precis

Science and

Volume

often have eac

gle Node Clus

studying the
systems spec

ensive clouds
les as uniform

o node manag

organized as a
e partitioned
h chunk is as
entifier) name
as SHA1. The
for a given

hash function r
thname string
of the first an
respectively

/tom/tmp/a.log

ookup operat
odes. In most
a lookup is O

tecture are thr

es, then its
o its successo
chunks whos
from its succe
o self-configu
ifying the s

delay by visi
e even reduced
also be perform

to the me
the DHT ne

sely and effec

d Research

2 Issue 4, A
www.ijsr.n

ch role

ter

e load
cialized
s. Our
mly as
ges an

a DHT
into a

ssigned
ed with
e hash

file’s
returns
 and a

nd third
SHA1

g, 2).

tion is
DHTs,
(log n)

reefold

locally
or; if a
se IDs
ssor to

ure and
system

iting O
d since
med in

etadata
etwork
ctively,

ou
sc
Fi
Fi
m
m
in

2.2.

a.

A l
state
our
estim
(hea
ligh
thre
of c
depa
repr
nod
nod
nod
com
ligh
chun
load
the
nod
nod
deno
over

Bas
ligh
load
iden
acco

b.

In t
base
statu
each
the

A v
netw
Usin
loca
has
deno

If n
requ
itsel
sort
Alg

(IJSR), In

April 2013
net

ur proposal ca
cale distribute
ile System) [3
ile System)
anages the na
apping of fil
formation.

 Load Reba

 Overview

arge-scale dis
e if each chun
proposed alg

mates whethe
avy) without c
ht if the numb
eshold value A
chunks it host
arts and re-joi
resent node i a

de j + 2, the
de j + 3, and so
des in the s
mplexity of th
ht node can k
nks beforehan
ds in parallel.

top-k1 under
des. We use
des in the sort
ote the set of
rloaded nodes

ed on the abo
ht node that s
ded node in
ntified easily
ordingly.

Basic Algorit

the basic algo
ed aggregatio
uses of a samp
h node contac
system and bu

vector consists
work address a
ng the gossip
ally maintaine
s entries. It th
oted by A.

ode i finds its
uest chunks. N
lf based on th
ted list, i.e., it
orithm 1 spec

dia Online

an be integra
ed file system
3] and Hadoo
[5], in whic
amespace of
le chunks to

alancing Algo

stributed file
nk server host
gorithm, each
er it is under
considering th
ber of chunk

A. In contrary
ts is more tha
ins as a succe
as node j + 1
successor of
o on. This pro
system becom
he above algo
know which h
nd, and then a
 Thus, we ex
r loaded nod
U to denote
ed list of und
top-k2 overlo

s.

ove-introduced
should reques

O is the k1
y and load

thms

orithm, each
n protocol in
ple of random
cts a number
uilds a vector

s of entries, a
and load statu

p-based protoc
ed vector with
hen calculates

self is a light
Node i sorts th
he load status
t is the top-k1
cifies the oper

 ISSN: 231

ated easily wi
ms, e.g., Goog
op HDFS (Ha
h a centraliz
the entire fil
storage node

orithm

system is in
ts no more tha
h chunk serv
r loaded (ligh
he global know
ks it hosts is
y a Node is hea
an A. For ins

essor of anothe
, node j’s orig
node j’s orig

ocess repeats u
me light nod
orithm can be
heavy node it
all light nodes
xtend the algo
des with thet

the set of t
der loaded nod
aded nodes in

d load balanci
st chunks from
1thleast loade
d between t

node implem
n [26], [27] to
mly selected no

of randomly
denoted by V

and each entry
us of a random
col, each nod
h its neighbou
the average lo

node, it seeks
he nodes in its
and finds its

1 under loaded
ration that a l

19-7064

th existing la
gle GFS (Go
adoop Distrib
zed master n
e system and
es as metad

n a load-balan
an ‘A’ chunk

ver node ‘I’
ht) or overloa
wledge. A nod

smaller than
avy if the num
stance if a no
er node j, then
ginal successo
ginal successo
until all the he
des. The t
e reduced if e

needs to req
can balance t

orithm by pai
top-k2 overloa
top-k1underloa
des, and use O
n the sorted li

ing algorithm
m the k2-th m
ed node in U
them is sh

ments the gos
o collect the
odes. Specific
selected node

V.

y contains the
mly selected n
de i exchange
urs until its ve
oad of the s no

s a heavy nod
s vector inclu
position k1 in
d node in the
light node i s

arge-
ogle
uted
node
d the
data

nced
s. In
first

aded
de is

n the
mber
ode i
n we
or as
or as
eavy
time
each

quest
their
iring
aded
aded
O to
st of

, the
most
U is

hared

ssip-
load
ally,
es in

e ID,
node.
s its

ector
odes

de to
ding
n the

list.
eeks

84

an
so

 2

A
di
pa
pr

F
cr
re
di
m
as
ex

2.

T
di
ca
un

D
co
si
ch

T
ho
jo
pr

F

re

Inter

n overloaded
ome file chunk

2.2 Chunk Cr

A file is parti

istinct nodes s
arallel over t
roportional to

iles and node
reated, deleted
eplaced and ad
istributed as

main objective
s possible am
xcessive numb

.2 DHT Form

The storage n
istributed has
an simply ref
nique handle (

DHTs enable
onstantly offe
implifying th
hunk servers i

Typical DHTs
osted chunks
oins, then it a
recede the join

Figure 2. An
nodes in a D

Figure 3. An D
Heavy, sinc

epresent the T
of each stora

rnational J

node j, and A
ks from j.

reation

tioned into a
so that Map R
the nodes. T

o the number o

es in a cloud
d, and append
dded in the fi
uniformly as

e is to allocate
mong the node

ber of chunks

mulation

nodes are stru
sh tables(DHT
fer to rapid ke
(or identifier)

nodes to s
ering lookup
he system pr
in are organiz

guarantee tha
are reliably m
allocates the
ning node from

n example dep
DHT Network

stora

DHT Network
ce the more Lo
Target load(ma
age Node and

N

Journal of S

Algorithm 2 sh

a number of c
Reduce Tasks
The load of a
of file chunks

d environmen
ded, and node
ile system, the

possible amo
e the chunks o
es such that n
.

uctured as a
Ts), e.g., disco
ey lookup in
 is assigned to

self-organize
functionality
rovision and
ed as a DHT n

at if a node lea
migrated to its

chunks whos
m its successo

picts the distri
along the load

age nodes.

k in which the
oad is assigned
aximum Load
‘L’ represent

Node.

Science and

Volume

hows that i re

chunks alloca
can be perform
a node is typ
the node poss

nt can be arb
es can be upg
e file chunks a
ong the node
of files as uni
no node mana

network bas
overing a file
DHTs, given

o each file chu

and repair
in node dyna
management

network.

aves, then its
successor; if

se IDs immed
or to manage.

ibution of stor
d statuses of e

e Load of Nod
d to it ,where

d assigned to N
t the Load of e

d Research

2 Issue 4, A
www.ijsr.n

equests

ated in
med in
pically
sesses.

itrarily
graded,
are not

es. The
formly

ages an

sed on
chunk

n that a
unk.

while
amism,
t. The

locally
a node
diately

rage
each

de B is
‘T’

Nodes)
each

F
w

Fi
reb

A
w

2.3

In t
(Fig
over
ligh
thre

Loa
Spe
sele
V. A
ID,
nod
sync

2.4

In d
HDF
mai
resp

 Loa
It is
iden
reba
nod
prob
num

3.

A n
reba

(IJSR), In

April 2013
net

igure 4. Load
which makes th

st

igure 5. Heav
balanced (Nod
Algorithm to t

which enhance
highly desire

Load Rebala

the Load reba
g 3.1) first est
rloaded (heav

ht if the numb
eshold.

ad statuses o
cifically, eac

ected nodes in
A vector cons
network addr

de.Algorithms1
chronization.

Replica Man

distributed fil
FS), a constan
ntained in dis

pect to node fa

ad rebalancing
s unlikely th
ntical node b
alancing algor

de samples a
bability of 1/n

mber of storag

Conclusio

novel load b
alancing probl

dia Online

d status of Nod
he system to m
tate leading to

vy Load assign
de C) using th
the make the s
es the overall s
ed in a large-sc

ancing Algori

alancing algor
timate whethe
vy) without g
ber of chunk

of a sample
ch node cont
n the system a
sists of entrie
ress and load
1 and 2 are ex

nagement

le systems (e
nt number of r
stinct nodes to
ailures and dep

g algorithm do
at two or m

because of th
rithm. More s

number of
n, to share th
e nodes).

on

alancing algo
lem in large-s

 ISSN: 231

de B is assum
move into a Lo
o system failur

ned to Node B
he proposed Lo
system Fully L
system perform
cale, data-inte

ithm

rithm, each ch
er it is under
global knowl

ks it hosts is

of randomly
tacts a numb
and builds a v
es, and each e
d status of a r
xecuted simult

.g., Google G
replicas for ea
o improve file
partures.

oes not treat r
more replicas
he random na
specifically, e
nodes, each

heir loads (wh

orithm to de
scale, dynami

19-7064

ed to be Heav
oad imbalance
re.

B is dynamical
oad Rebalanci
Load Balance
mance which
ensive clouds.

hunk server n
loaded (light

ledge. A nod
smaller than

y selected no
ber of rando
vector denoted
entry contains
randomly sele
taneously with

GFS and Had
ach file chunk
e availability w

replicas distin
are placed in

ature of our
each under loa

selected wit
here n is the t

al with the
ic, and distrib

vy,
ed

lly
ing
d
is

node
t) or

de is
n the

odes.
omly
d by
s the
ected
hout

doop
k are
with

ctly.
n an
load
aded
th a
total

load
uted

85

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 4, April 2013
www.ijsr.net

file systems in clouds has been presented in this paper. Our
proposal strives to balance the loads of nodes and reduce the
demanded movement cost as much as possible, while taking
advantage of physical network locality and node
heterogeneity. In the absence of representative real
workloads in the public domain, we have investigated the
performance of our proposal and compared it against
competing algorithms through synthesized probabilistic
distributions of file chunks.

The synthesis workloads stress test the load balancing
algorithms by creating a few storage nodes that are heavily
loaded. Our proposal is comparable to the centralized
algorithm in HDFS(Hadoop distributer file system and can be
incorporated in a Single-Node or Multi-Node Hadoop HDFS
cluster environment thorough which the clustering of the
Storage Nodes can be done easily and also helps in cluster
Node’s provisioning and management in Clouds. Hence
maintaining the cluster environment in a Load balanced state
even if load of system is increased linearly, since the nature
of our algorithm is fully distributed and dynamic .The
proposed load balancing algorithm dramatically outperforms
the competing distributed algorithm in terms of load
imbalance factor, movement cost, and algorithmic overhead
and also in a proximity-aware manner among the storage
Nodes.

4. Future Work

In complex and large systems, there is a tremendous need for
load balancing. For simplifying load balancing globally (e.g.
in a cloud), one thing which can be done is, employing
techniques would act at the components of the clouds in such
a way that the load of the whole cloud is balanced. Cloud
Computing is a vast concept and load balancing plays a very
important role in case of Clouds. There is a huge scope of
improvement in this area. The performance of the given
algorithms can also be increased by varying different
parameters.

5. Acknowledgment

I express my sincere thanks to Mrs. R. MangalaGowri,
Assistant Professor and Dr. D. Malathi Head of the
Department for providing guidance during the course of this
work.

References

[1] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury:

Supporting Scalable Multi-Attribute Range Queries,” in
Proc. ACM SIGCOMM’04, Aug. 2004, pp. 353–366.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” in Proc. 6th Symp.
Operating System Design and Implementation
(OSDI’04), Dec. 2004, pp. 137–150.

[3] S. Ghemawat, H. Gobioff, and S.T. Leung, “The
Google File System,” in Proc. 19th ACM Symp.
Operating Systems Principles (SOSP’03), Oct.2003, pp.
29–43.

[4] Apache Hadoop, http://hadoop.apache.org/.

[5] Hadoop Distributed File System,
http://hadoop.apache.org/hdfs/.

[6] Hadoop Distributed File System, “Rebalancing Blocks,”
[7] http://developer.yahoo.com/hadoop/tutorial/module2.ht

ml#rebalancing.
[8] Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load

Balancing for DHT based P2P Systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 16, no. 4, pp. 349–361, Apr.
2005.

[9] VMware, http://www.vmware.com/Xen,
http://www.xen.org/

86

