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Abstract: Nowadays most of the cloud applications process large amount of data to provide the desired results. Data volumes to be 
processed by cloud applications are growing much faster than computing power. This growth demands on new strategies for processing 
and analysing the information. The project explores the use of Hadoop MapReduce framework to execute scientific workflows in the 
cloud. Cloud computing provides massive clusters for efficient large computation and data analysis. In such file systems, a file is 
partitioned into a number of file chunks allocated in distinct nodes so that MapReduce tasks can performed in parallel over the nodes to 
make resource utilization effective and to improve the response time of the job. In large failure prone cloud environments files and 
nodes are dynamically created, replaced and added in the system due to which some of the nodes are over loaded while some others are 
under loaded. It leads to load imbalance in distributed file system. To overcome this load imbalance problem, a fully distributed Load 
rebalancing algorithm has been implemented, which is dynamic in nature does not consider the previous state or behaviour of the 
system (global knowledge) and it only depends on the present behaviour of the system and estimation of load, comparison of load, 
stability of different system, performance of system, interaction n between the nodes, nature of load to be transferred, selection of nodes 
and network traffic. The current Hadoop implementation assumes that computing nodes in a cluster are homogeneous in nature. The 
performance of Hadoop in heterogeneous clusters where the nodes have different computing capacity is also tested. 
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1. Introduction 

Cloud computing is a relatively new way of referring to the 
use of shared computing resources, and it is an alternative to 
having local servers handle applications. Cloud computing 
groups together large numbers of computer servers and other 
resources and typically offers their combined capacity on an 
on-demand, pay-per-cycle basis without sophisticated 
deployment and management of resources. The end users of a 
cloud computing network usually have no idea where the 
servers are physically located, they just spin up their 
application and start working. This flexibility is the key 
advantage to cloud computing, and what distinguishes it from 
other forms of grid or utility computing and software as a 
service (SaaS). The ability to launch new instances of an 
application with minimal labor and expense allows 
application providers to scale up and down rapidly, recover 
from a failure, bring up development or test instances, and 
roll out new versions to the customer base. 

 
Distributed file systems are key building blocks for cloud 
computing applications based on the MapReduce J. Deanet 
all [1] programming paradigm. MapReduce programs are 
designed to compute large volumes of data in a parallel 
fashion. This requires dividing the workload across a large 
number of machines. Hadoop provides a systematic way to 
implement this programming paradigm. The computation 
takes a set of input key/value pairs and produces a set of 
output key/value pairs. The computation involves two basic 
operations: Map and Reduce. The Map operation, written by 
the user, takes an input pair and produces a set of 
intermediate key/value pairs. The MapReduce library groups 
together all intermediate values associated with the same 
intermediate Key #1 and passes them to the Reduce function.  
 

The Reduce function, also written by the user, accepts an 
intermediate Key #1 and a set of values for that key. It 
merges together these values to form a possibly smaller set of 
values. Typically just an output value of 0 or 1 is produced 
per Reduce invocation. The intermediate values are supplied 
to the user's Reduce function via an iterator (an object that 
allows a programmer to traverse through all the elements of a 
collection regardless of its specific implementation. 
 
The proposed fully distributed load rebalancing algorithm 
can be integrated with the Hadoop [3] Single-Node Cluster or 
Multi-Node Cluster to enhance the performance of the 
NameNode in balancing the loads of storage nodes present in 
the cluster. Figure 1 represents a typical Single-Node Hadoop 
Cluster. The three major categories of machine roles in a 
Client machines, Masters Nodes, and Slave nodes.  The 
Master nodes oversee the two key functional pieces that 
make up Hadoop: storing lots of data (HDFS), and running 
parallel computations on all that data (Map Reduce).  The 
Name Node oversees and coordinates the data storage 
function (HDFS), while the Job Tracker oversees and 
coordinates the parallel processing of data using Map 
Reduce.  Slave Nodes make up the vast majority of machines 
and do all the dirty work of storing the data and running the 
computations.  Each slave runs both a Data Node and Task 
Tracker daemon that communicate with and receive 
instructions from their master nodes.  The Task Tracker 
daemon is a slave to the Job Tracker, the Data Node daemon 
a slave to the Name Node. Client machines have Hadoop 
installed with all the cluster settings, but are neither a Master 
nor a Slave.  Instead, the role of the Client machine is to load 
data into the cluster, submit Map Reduce jobs describing how 
that data should be processed and then retrieve or view the 
results of the job when it’s finished.  In smaller clusters (~40 
nodes) you may have a single physical server playing 
multiple roles, such as both Job Tracker and Name Node. 
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file systems in clouds has been presented in this paper. Our 
proposal strives to balance the loads of nodes and reduce the 
demanded movement cost as much as possible, while taking 
advantage of physical network locality and node 
heterogeneity. In the absence of representative real 
workloads in the public domain, we have investigated the 
performance of our proposal and compared it against 
competing algorithms through synthesized probabilistic 
distributions of file chunks. 

The synthesis workloads stress test the load balancing 
algorithms by creating a few storage nodes that are heavily 
loaded. Our proposal is comparable to the centralized 
algorithm in HDFS(Hadoop distributer file system and can be 
incorporated in a Single-Node or Multi-Node Hadoop HDFS 
cluster environment thorough which the clustering of the 
Storage Nodes can be done easily and also helps in cluster 
Node’s provisioning and management in Clouds. Hence 
maintaining the cluster environment in a Load balanced state 
even if load of system is increased linearly, since the nature 
of our algorithm is fully distributed and dynamic .The 
proposed load balancing algorithm dramatically outperforms 
the competing distributed algorithm in terms of load 
imbalance factor, movement cost, and algorithmic overhead 
and also in a proximity-aware manner among the storage 
Nodes. 

 
4. Future Work 
 
In complex and large systems, there is a tremendous need for 
load balancing. For simplifying load balancing globally (e.g. 
in a cloud), one thing which can be done is, employing 
techniques would act at the components of the clouds in such 
a way that the load of the whole cloud is balanced. Cloud 
Computing is a vast concept and load balancing plays a very 
important role in case of Clouds. There is a huge scope of 
improvement in this area. The performance of the given 
algorithms can also be increased by varying different 
parameters. 
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