International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Cluster Based Load Rebalancing in Clouds

S. Aravind Kumar!, R. Mangalagowri’

!Department of Computer Science, SRM University, Kattankulathur, India
aravind.cse09@gmail.com

2Department of Computer Science, Faculty of Engineering and Technology SRM University, Kattankulathur, India
mangalcse@yahoo.com

Abstract: Nowadays most of the cloud applications process large amount of data to provide the desired results. Data volumes to be
processed by cloud applications are growing much faster than computing power. This growth demands on new strategies for processing
and analysing the information. The project explores the use of Hadoop MapReduce framework to execute scientific workflows in the
cloud. Cloud computing provides massive clusters for efficient large computation and data analysis. In such file systems, a file is
partitioned into a number of file chunks allocated in distinct nodes so that MapReduce tasks can performed in parallel over the nodes to
make resource utilization effective and to improve the response time of the job. In large failure prone cloud environments files and
nodes are dynamically created, replaced and added in the system due to which some of the nodes are over loaded while some others are
under loaded. It leads to load imbalance in distributed file system. To overcome this load imbalance problem, a fully distributed Load
rebalancing algorithm has been implemented, which is dynamic in nature does not consider the previous state or behaviour of the
system (global knowledge) and it only depends on the present behaviour of the system and estimation of load, comparison of load,
stability of different system, performance of system, interaction n between the nodes, nature of load to be transferred, selection of nodes
and network traffic. The current Hadoop implementation assumes that computing nodes in a cluster are homogeneous in nature. The

performance of Hadoop in heterogeneous clusters where the nodes have different computing capacity is also tested.

Keywords: Hadoop, Map Reduce, cloud computing, clusters.

1. Introduction

Cloud computing is a relatively new way of referring to the
use of shared computing resources, and it is an alternative to
having local servers handle applications. Cloud computing
groups together large numbers of computer servers and other
resources and typically offers their combined capacity on an
on-demand, pay-per-cycle basis without sophisticated
deployment and management of resources. The end users of a
cloud computing network usually have no idea where the
servers are physically located, they just spin up their
application and start working. This flexibility is the key
advantage to cloud computing, and what distinguishes it from
other forms of grid or utility computing and software as a
service (SaaS). The ability to launch new instances of an
application with minimal labor and expense allows
application providers to scale up and down rapidly, recover
from a failure, bring up development or test instances, and
roll out new versions to the customer base.

Distributed file systems are key building blocks for cloud
computing applications based on the MapReduce J. Deanet
all [1] programming paradigm. MapReduce programs are
designed to compute large volumes of data in a parallel
fashion. This requires dividing the workload across a large
number of machines. Hadoop provides a systematic way to
implement this programming paradigm. The computation
takes a set of input key/value pairs and produces a set of
output key/value pairs. The computation involves two basic
operations: Map and Reduce. The Map operation, written by
the user, takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library groups
together all intermediate values associated with the same
intermediate Key #1 and passes them to the Reduce function.

The Reduce function, also written by the user, accepts an
intermediate Key #1 and a set of values for that key. It
merges together these values to form a possibly smaller set of
values. Typically just an output value of 0 or 1 is produced
per Reduce invocation. The intermediate values are supplied
to the user's Reduce function via an iterator (an object that
allows a programmer to traverse through all the elements of a
collection regardless of its specific implementation.

The proposed fully distributed load rebalancing algorithm
can be integrated with the Hadoop [3] Single-Node Cluster or
Multi-Node Cluster to enhance the performance of the
NameNode in balancing the loads of storage nodes present in
the cluster. Figure 1 represents a typical Single-Node Hadoop
Cluster. The three major categories of machine roles in a
Client machines, Masters Nodes, and Slave nodes. The
Master nodes oversee the two key functional pieces that
make up Hadoop: storing lots of data (HDFS), and running
parallel computations on all that data (Map Reduce). The
Name Node oversees and coordinates the data storage
function (HDFS), while the Job Tracker oversees and
coordinates the parallel processing of data using Map
Reduce. Slave Nodes make up the vast majority of machines
and do all the dirty work of storing the data and running the
computations. Each slave runs both a Data Node and Task
Tracker daemon that communicate with and receive
instructions from their master nodes. The Task Tracker
daemon is a slave to the Job Tracker, the Data Node daemon
a slave to the Name Node. Client machines have Hadoop
installed with all the cluster settings, but are neither a Master
nor a Slave. Instead, the role of the Client machine is to load
data into the cluster, submit Map Reduce jobs describing how
that data should be processed and then retrieve or view the
results of the job when it’s finished. In smaller clusters (~40
nodes) you may have a single physical server playing
multiple roles, such as both Job Tracker and Name Node.

Volume 2 Issue 4, April 2013
WWW.ijsr.net

83



International Journal of Science and Research (I1JSR), India Online ISSN: 2319-7064

With medium to large clusters you will often have each role
operating on a single server machine.

Clients

Distributed Data Processing Distributed Data Storage
Map Reduce HDFS
|

secondary |
T fasters

Job Tracker Name Node e |
Data Node & | < Dita Noda & > Data Node &
< Task Tracker © | Tock Tracher Task Tracker

slaves

Dataiode & Data hode & Data flode &
Task Trackar Task Trather ‘Task Trackar

Figurel: Hadoop Server roles in Single Node Cluster

In this paper, we are interested in studying the load
rebalancing problem in distributed file systems specialized
for large-scale, dynamic and data-intensive clouds. Our
objective is to allocate the chunks of files as uniformly as
possible among the nodes such that no node manages an
excessive humber of chunks.

2. Our Proposal
2.1 DHT Architecture

The chunk servers in our proposal are organized as a DHT
Network [8]; in such networks file are partitioned into a
number of fixed-size chunks, and each chunk is assigned
with a unique chunk handle (or chunk identifier) named with
a globally known hash function such as SHAL. The hash
function returns a unique identifier for a given file’s
pathname string and a chunk index. The hash function returns
a unique identifier for a given file’s pathname string and a
chunk index. For example, the identifiers of the first and third
chunks of file “/user/tom/tmp/a.log” are respectively SHA1
(/user/tom/tmp/a.log, 0) and SHAL (/user/tom/tmp/a.log, 2).

To discover a file chunk, the DHT lookup operation is
performed among the available storage nodes. In most DHTSs,
the average number of nodes visited for a lookup is O (log n)

[1]. [2].

In summary, contributions of DHT Architecture are threefold

as follows:

e DHTs guarantee that if a node leaves, then its locally
hosted chunks are reliably migrated to its successor; if a
node joins, then it allocates the chunks whose IDs
immediately precede the joining node from its successor to
manage, which enables chunk servers to self-configure and
self-heal in our proposal,andsimplifying the system
provisioning and management.

e In typical DHTs lookups take a modest delay by visiting O
(log n) nodes; the lookup latency can be even reduced since
discovering the ‘I’ chunks of a file can also be performed in
parallel.

e The DHT network is transparent to the metadata
management in our proposal. While the DHT network
specifies the locations of chunks precisely and effectively,

our proposal can be integrated easily with existing large-
scale distributed file systems, e.g., Google GFS (Google
File System) [3] and Hadoop HDFS (Hadoop Distributed
File System) [5], in which a centralized master node
manages the namespace of the entire file system and the
mapping of file chunks to storage nodes as metadata
information.

2.2. Load Rebalancing Algorithm

a. Overview

A large-scale distributed file system is in a load-balanced

state if each chunk server hosts no more than ‘A’ chunks. In
our proposed algorithm, each chunk server node ‘I’ first
estimates whether it is under loaded (light) or overloaded
(heavy) without considering the global knowledge. A node is
light if the number of chunks it hosts is smaller than the
threshold value A. In contrary a Node is heavy if the number

of chunks it hosts is more than A. For instance if a node i
departs and re-joins as a successor of another node j, then we
represent node i as node j + 1, node j’s original successor as
node j + 2, the successor of node j’s original successor as
node j + 3, and so on. This process repeats until all the heavy
nodes in the system become light nodes. The time
complexity of the above algorithm can be reduced if each
light node can know which heavy node it needs to request
chunks beforehand, and then all light nodes can balance their
loads in parallel. Thus, we extend the algorithm by pairing
the top-ki under loaded nodes with thetop-k2 overloaded
nodes. We use U to denote the set of top-kiunderloaded
nodes in the sorted list of under loaded nodes, and use O to
denote the set of top-k2 overloaded nodes in the sorted list of
overloaded nodes.

Based on the above-introduced load balancing algorithm, the
light node that should request chunks from the k2-th most
loaded node in O is the klthleast loaded node in U is
identified easily and load between them is shared
accordingly.

b. Basic Algorithms

In the basic algorithm, each node implements the gossip-
based aggregation protocol in [26], [27] to collect the load
statuses of a sample of randomly selected nodes. Specifically,
each node contacts a number of randomly selected nodes in
the system and builds a vector denoted by V.

A vector consists of entries, and each entry contains the ID,
network address and load status of a randomly selected node.
Using the gossip-based protocol, each node i exchanges its
locally maintained vector with its neighbours until its vector
has s entries. It then calculates the average load of the s nodes

denoted by A.

If node i finds itself is a light node, it seeks a heavy node to
request chunks. Node i sorts the nodes in its vector including
itself based on the load status and finds its position k1 in the
sorted list, i.e., it is the top-k1 under loaded node in the list.
Algorithm 1 specifies the operation that a light node i seeks

Volume 2 Issue 4, April 2013
WWW.ijsr.net

84



International Journal of Science and Research (I1JSR), India Online ISSN: 2319-7064

an overloaded node j, and Algorithm 2 shows that i requests
some file chunks from j.

2.2 Chunk Creation

A file is partitioned into a number of chunks allocated in
distinct nodes so that Map Reduce Tasks can be performed in
parallel over the nodes. The load of a node is typically
proportional to the number of file chunks the node possesses.

Files and nodes in a cloud environment can be arbitrarily
created, deleted, and appended, and nodes can be upgraded,
replaced and added in the file system, the file chunks are not
distributed as uniformly as possible among the nodes. The
main objective is to allocate the chunks of files as uniformly
as possible among the nodes such that no node manages an
excessive humber of chunks.

2.2 DHT Formulation

The storage nodes are structured as a network based on
distributed hash tables(DHTSs), e.g., discovering a file chunk
can simply refer to rapid key lookup in DHTSs, given that a
unique handle (or identifier) is assigned to each file chunk.

DHTs enable nodes to self-organize and repair while
constantly offering lookup functionality in node dynamism,
simplifying the system provision and management. The
chunk servers in are organized as a DHT network.

Typical DHTs guarantee that if a node leaves, then its locally
hosted chunks are reliably migrated to its successor; if a node
joins, then it allocates the chunks whose IDs immediately
precede the joining node from its successor to manage.

=

2

g

lemwork —

Figure 2. An example depicts the distribution of storage
nodes in a DHT Network along the load statuses of each
storage nodes.

Node A

Node B

Node C

20

10 10

DOHT Netwark

Figure 3. An DHT Network in which the Load of Node B is
Heavy, since the more Load is assigned to it ,where ‘T’
represent the Target load(maximum Load assigned to Nodes)
of each storage Node and ‘L’ represent the Load of each
Node.

20 L=45

Nade A

el

3 Node 8 . -
s

& NodeC | ]
==
DHT Network

Figure 4. Load status of Node B is assumed to be Heavy,
which makes the system to move into a Load imbalanced
state leading to system failure.

T=50

L=41

T=35

10 L=3

T=15

20 11

Node A

3 Node B

Node C

DHT Network

Figure 5. Heavy Load assigned to Node B is dynamically
rebalanced (Node C) using the proposed Load Rebalancing
Algorithm to the make the system Fully Load Balanced
which enhances the overall system performance which is
highly desired in a large-scale, data-intensive clouds.

2.3 Load Rebalancing Algorithm

In the Load rebalancing algorithm, each chunk server node
(Fig 3.1) first estimate whether it is under loaded (light) or
overloaded (heavy) without global knowledge. A node is
light if the number of chunks it hosts is smaller than the
threshold.

Load statuses of a sample of randomly selected nodes.
Specifically, each node contacts a number of randomly
selected nodes in the system and builds a vector denoted by
V. A vector consists of entries, and each entry contains the
ID, network address and load status of a randomly selected
node.Algorithms1 and 2 are executed simultaneously without
synchronization.

2.4 Replica Management

In distributed file systems (e.g., Google GFS and Hadoop
HDFS), a constant number of replicas for each file chunk are
maintained in distinct nodes to improve file availability with
respect to node failures and departures.

Load rebalancing algorithm does not treat replicas distinctly.
It is unlikely that two or more replicas are placed in an
identical node because of the random nature of our load
rebalancing algorithm. More specifically, each under loaded
node samples a number of nodes, each selected with a
probability of 1/n, to share their loads (where n is the total
number of storage nodes).

3. Conclusion

A novel load balancing algorithm to deal with the load
rebalancing problem in large-scale, dynamic, and distributed

Volume 2 Issue 4, April 2013

WWW.1JSr.net

85



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

file systems in clouds has been presented in this paper. Our
proposal strives to balance the loads of nodes and reduce the
demanded movement cost as much as possible, while taking
advantage of physical network locality and node
heterogeneity. In the absence of representative real
workloads in the public domain, we have investigated the
performance of our proposal and compared it against
competing algorithms through synthesized probabilistic
distributions of file chunks.

The synthesis workloads stress test the load balancing
algorithms by creating a few storage nodes that are heavily
loaded. Our proposal is comparable to the centralized
algorithm in HDFS(Hadoop distributer file system and can be
incorporated in a Single-Node or Multi-Node Hadoop HDFS
cluster environment thorough which the clustering of the
Storage Nodes can be done easily and also helps in cluster
Node’s provisioning and management in Clouds. Hence
maintaining the cluster environment in a Load balanced state
even if load of system is increased linearly, since the nature
of our algorithm is fully distributed and dynamic .The
proposed load balancing algorithm dramatically outperforms
the competing distributed algorithm in terms of load
imbalance factor, movement cost, and algorithmic overhead
and also in a proximity-aware manner among the storage
Nodes.

4. Future Work

In complex and large systems, there is a tremendous need for
load balancing. For simplifying load balancing globally (e.g.
in a cloud), one thing which can be done is, employing
techniques would act at the components of the clouds in such
a way that the load of the whole cloud is balanced. Cloud
Computing is a vast concept and load balancing plays a very
important role in case of Clouds. There is a huge scope of
improvement in this area. The performance of the given
algorithms can also be increased by varying different
parameters.

5. Acknowledgment

I express my sincere thanks to Mrs. R. MangalaGowri,
Assistant Professor and Dr. D. Malathi Head of the
Department for providing guidance during the course of this
work.

References

[1] A. Bharambe, M. Agrawal, and S. Seshan, “Mercury:
Supporting Scalable Multi-Attribute Range Queries,” in
Proc. ACM SIGCOMM’04, Aug. 2004, pp. 353-366.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” in Proc. 6th Symp.
Operating System Design and Implementation
(OSDI°04), Dec. 2004, pp. 137-150.

[3] S. Ghemawat, H. Gobioff, and S.T. Leung, “The
Google File System,” in Proc. 19th ACM Symp.
Operating Systems Principles (SOSP’03), Oct.2003, pp.
29-43.

[4] Apache Hadoop, http://hadoop.apache.org/.

(5]

[6]
[7]

(8]

(9]

Hadoop Distributed File System,
http://hadoop.apache.org/hdfs/.

Hadoop Distributed File System, “Rebalancing Blocks,”
http://developer.yahoo.com/hadoop/tutorial/module2.ht
ml#rebalancing.

Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load
Balancing for DHT based P2P Systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 16, no. 4, pp. 349-361, Apr.
2005.

VMware, http://www.vmware.com/Xen,
http://www.xen.org/

Volume 2 Issue 4, April 2013
WWW.ijsr.net

86





