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Abstract: Many users like to watch video by a mobile phone, but the media player has many limitations. With a rapid development of 
communication and network, multimedia based technology is adopted in media player. Different approaches of media player shown in 
this paper are plug-in extension technology, multimedia based on hierarchy, media player based on file browser, media player based on 
FFmpeg (Fast Forward Moving Picture Expert Group), media player based on file server. 
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1. Introduction 

With the continuous development of science and 
technology, mobile phone is no longer just communication, 
but a multimedia platform that provides multimedia 
capabilities. Playing a video on media player becomes basic 
function, but the media player has many limitations since 
there’re limited format supported by media player. 

At present, the decode module of most of the media 
players is based on FFmpeg decode library which supports 
more than 90 kinds of decoders, such as Storm Codec, KMP 
Codec, etc and the display module is based on SDL (Simple 
DirectMedia Layer) [1], [2], [4], [20].  

This paper shows different approaches for design of media 
player. First is plug-in extension technology on android 
multimedia player software platform. Second is media player 
based on hierarchy. Third is android media player software 
development. Fourth, is android media framework and fifth, 
is continuous media player. 

Section II provides an overview of different approaches to 
be used. Section III describes the comparison of different 
approaches and finally section IV refers to conclusion. 

2. Different Approaches 

 FFmpeg is an open source that produces libraries and 
programs used in audio and video areas. It support more than 
90 kinds of decoders and also support protocols such as 
H.261/H.263/H.264 [12], [14] and so on. It provides a 
complete solution to transcode, record and stream 
audio/video [16]. It includes an audio/video codec library, an 
audio/video container mux and demux library, the 
transplantation and codec quality [1], [2], [4].  

SDL is a library used to display audio and video 
information. Display module of most of the media player is 
based on SDL [1], [2], [4], [20]. 

 

2.1 Plug-in extension technology on android multimedia 
player software platform 

 
2.1.1  Multimedia player software platform on android 

Jin and Jiaming describes multimedia player software 
platform on Android with the use of the OpenCORE kernel. 
Packaging the kernel and providing in the form of SDK is 
used to develop multimedia player application in mobile 
terminal, such as video player and streaming media player, 
etc [1]. 

 

Figure 1. Architecture of multimedia player software 
platform 

 
2.1.2  Architecture of plug-in software platform on       

   FFmpeg 
  Wu and Xiao show the development of application needs 

powerful decoding and container that support more video 
encoding formats. It describes the upper layer is Java, which 
provides the application development interface 
(Android_FFmpeg API). The bottom layer is the C/C++ 
layer, which is the core layer used to process audio/video 
data with FFmpeg [11]. 
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The implementation of FFmpeg consist of audio/video 
which is packed at the bottom layer includes the data source 
analysis of audio/video, the play of audio/video, paused and 
callback related mistakes, etc. The implementation of the 
bottom layer will be provided by Android_FFmpeg API 
through Java Native Interface (JNI) [1]. 

 

 
Figure 2. Architecture of plug-in software platform based on 

FFmpeg 
 

The bottom layer involves the audio/video data processing 
core (libffmpeg.so). It packages the related audio/video 
function of FFmpeg. It includes decoding of all major 
audio/video, synchronization between multiple media 
streams [17], completing the display and playback features 
of the audio/video [20], after decoding low-level audio/video 
equipment libraries (libvideo.so; libaudio.so) [1].  

The decoding of selected components achieves the 
decoding format from the header of the native file or 
streaming media file. It also selects corresponding decoder to 
decode compressed media streams [1]. 

 

2.2 Media player based on hierarchy 

    
2.2.1  Design of media player 

 Song et. al., shows to play media files, the media player 
gather the media data first, decode the audio/video streams 
later, then display the data after decoding [2].  

During the three steps, media player needs to parse the 
coding format of the media file, decode for the original data 
by the corresponding decode programs, put the original data 
to buffer queues, then display the original data after being 
synchronized. Design reduces the application coupling [2].  

The layers of system structure of media player are UI, 
decode layer, pretreatment layer and data extract layer [2]. 
 
(a) UI  

UI is used to display the original data on media player for 
users such as functions of play, pause, page down, page up, 
etc [10], [11]. 

 
(b) Decode layer  

Decode layer is used to gather information of the media 
file formats, and then decodes audio/video streams by the 
corresponding decoder, and then synchronize the audio/video 

streams. It includes all kinds of decoders, the decoder 
choosing module and the synchronize module [11], [21]. 

 
Figure 3. Flow Chart of Decode layer 

 
Before decoding, registration of all the formats is 

necessary which can be decoded by the module. Then 
provide a link to connect the corresponding decode unit and 
a media format [2]. 

 
(c) Pretreatment layer  

 Pretreatment layer is used to demux the media file 
according to the available format and store the information 
of the media file into the buffer.  
 
(d) Data extract layer 

Data extract layer is used to read the media file. 
 

 
Figure 4. System structure of media player 

2.3 Android media player software development 

 
2.3.1  Android media player 

Jin et. al., shows common media codec mechanism, so it is 
easily been integrated to multimedia files such as audio, 
video and pictures. Android Media Player plays audio files 
such as local files, resource files and network file streams 
from many sources. This includes media player plays audio 
files from SD card and displays the lyrics synchronously [3], 
[13]. 
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Figure 5. System processes of media player 

 
2.3.2  Software module 
 
(a) Main menu module:  

Entering in the initial interface of media player, it consists 
of three options: All music, recently played list, and most 
often played list [3]. 

When Android system is start, media player automatically 
scan multimedia files in the SD card. Simultaneously, store 
the received information in a system database. To make the 
data in the multimedia database, broadcast mechanism is 
used. Then sending a broadcast in the application to update 
the multimedia database by scanning the SD card. Then 
register the scanSd Receiver, Broadcast Receiver [3]. 
 
(b) Play List module: 

Play List is a major part to show the name of audio files, 
its singers and durations. Play List is used to create a list, 
when using the mouse to click one of the items in ListView, 
it will trigger setOnItemClickListener monitor [3]. 
 
(c) Recently played module and the most often played    

module: 
Function onCreate() and onUpgrade() is used to create and 

update the database. Then invoke queryRecently() to realize 
recently played list by inquiring songs according to play time 
descending and invoke queryByClicks() to realize Most 
often played list by inquiring songs according to the hit 
descending [3]. 

 
(d) Play module: 

The main function is to display the information of title, 
lyrics and time about the song, and some of the media 
player’s functional keys, such as play, pause, stop, last, next, 
backward and forward, and then display the lyrics [3]. 
 
 
 
 
 
 
 
 
 

2.4 Android media framework 

 

 Figure 6. Android media framework 
 

2.4.1  Android media framework architecture 
Song et. al., describes the goal of Android media 

framework is to provide a consistent interface for all services 
provided by libraries. The core part of the media framework 
is composed of libmediaplayerservice, libmedia and 
libmedia_jni [4]. 

libmediaplayerservice implements players and the media 
service which manage player instances. 

Libmedia defines base interfaces and the inheritance 
hierarchy. libmedia_jni is the centre between java application 
and native library. First, it implements the JNI specification 
so that it can be used by java application [11], [26]. Second, 
it implements the pattern for the convenience of caller [4].  
 
2.4.2  Android media players 

Media Player is an important part of Android media 
framework. It is used to control the playback option of Audio 
and Video [20]. 

Methods of Media Player are implemented in C/C++ and 
then compiled to .so file. JavaTM Native Interface (JNI) is a 
standard programming interface for writing Java native 
methods and embedding the JavaTM virtual machine into 
native applications. Once the components decode the source 
audio file, the decoded stream is send to audio hardware to 
turn into sounds [4], [11], [26]. 
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Figure 7. Android media framework layer 

 
2.4.3  FFmpeg decode work flow 

FFmpeg provides powerful media encode/decode 
functions. First of all register all kinds of codec defined in 
FFmpeg to system. So that the audio/video files can be 
decoded by FFmpeg. Then open the media file from local 
files and get the file stream information and the file stream 
type. After these, choose a appropriate decoder and allocate 
memory for data structures AVCodec, AVFormatContext, 
AVStream.. And then divide the file stream into audio 
stream and video stream [4]. 

AVFormatContext is used to save the input/output data. 
AVCodecContext save the pointer of AVCodec and data 
related with codec. AVCodec is used to store the codec 
information such as pixels format information. AVStream 
saves the data segment [4]. 

 
2.4.4  FFmpeg transplant 

FFmpeg is a complete, cross-platform solution to convert 
record and stream audio/video files. The makefile 
Android.mk of NDK is different from normal makefile. So 
the precondition is modifying the makefile of FFmpeg. 

 
Figure 8. Decode work flow 

 
Transplantation of other files and then, files are compiled 

into .so files. These .so files are as components to provide the 
functions. The java applications invoke these files through 
JNI [4]. 

 

2.5 Continuous media player 

 
Figure 9. CM player architecture 

 
2.5.1  CM player system architecture 

Rowe and Smith shows the playback application is the 
interface between the user and the CM Server process. The 
application includes creating windows, responding to input 
events, and sending commands to the CM Server [5]. 

The CM Server receives CM data from the CM Source 
and sends it to the appropriate output device. The CM Server 
has a time-ordered play to synchronize the playing of audio 
and video packets [15]. It communicates with CM Source 
processes on the file server through inter process 
communication channels, and it communicates with the X 
server through shared memory. The system clocks on the 
different systems are synchronized so that actions in the CM 
Server and Sources can be synchronized. The CM Source 
processes read CM data and send it to the CM Server. CM 
data is sent in 8k packets on a UDP connection [5]. 

Meta data about scripts is stored in a database. The meta 
data is separated from the raw CM data so that different 
scripts can include overlapping clips without having to make 
a copy of the CM data [5]. 

 

70



International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064 

Volume 2 Issue 2, February 2013 
www.ijsr.net 

3. Comparison 

3.1 Time based audio and video synchronized algorithm 

FFmpeg provides DTS and PTS parameters, DTS is 
decoding time stamp and PTS is time show stamp. When 
obtaining a data packet from the multimedia data stream. 

 

 
Figure 10. The relationship diagram of the transport stream. 

PES stream and ES stream 
 

3.2 Time-based multimedia synchronized transmission 
algorithm is as follows: 

 
Jia-ming and Jin shows display and playback the 

multimedia data (audio or video), it is necessary to extract 
time stamp information (Tpts) from the multimedia data 
block, and compared to the current reference time (Tclock). 
If the timestamp of multimedia data block is less than the 
current reference time (Tpts< Tclock), play the current data 
as soon as possible, or even discard the current multimedia 
data directly; If the multimedia data blocks of time stamp is 
greater than the reference time stamp (Tpts> Tclock), the 
data block is transferring immediately to suspended state, 
and waiting to play [6]. 

 

 
Figure 11. Multimedia synchronization performances 

 
Selected 20 video files whose container format is flv and bit 
rate is 800kbps，to test multimedia synchronization 
performance. 

 
Table 1: Shows algorithm, audio and video synchronization, 

and codec standard support for different approaches 

4. Conclusion 

This paper shown different approaches for design of media 
player. Media player should consider the improvement in 
scenario such as decode efficiency needs to be improved, 
synchronization between multiple media streams, and 
display of the original data. Use of FFmpeg decode library 
seems to be an alternative method, research shows FFmpeg 
supports most media formats which gives a high decode 
efficiency.   

Different approaches shown in this paper are plug-in 
extension technology, multimedia based on hierarchy, media 
player based on file browser, media player based on 
FFmpeg, media player based on file server.  
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