
International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 2, February 2013
www.ijsr.net

Design of Android based Media Player

Nikhil S. Sakhare1, R. W. Jasutkar2

1P.G. Student, M.E. (Mobile Technology),

Department of Computer Science & Engineering,
G.H. Raisoni College of Engineering,

Nagpur, India
nikhilsakhare.06@gmail.com

2Assistant Professor,
Department of Computer Science & Engineering,

G.H. Raisoni College of Engineering,
Nagpur, India

ratnaprabha.jasutkar@gmail.com

Abstract: Many users like to watch video by a mobile phone, but the media player has many limitations. With a rapid development of
communication and network, multimedia based technology is adopted in media player. Different approaches of media player shown in
this paper are plug-in extension technology, multimedia based on hierarchy, media player based on file browser, media player based on
FFmpeg (Fast Forward Moving Picture Expert Group), media player based on file server.

Keywords: media player, FFmpeg, file browser, file server.

1. Introduction

With the continuous development of science and
technology, mobile phone is no longer just communication,
but a multimedia platform that provides multimedia
capabilities. Playing a video on media player becomes basic
function, but the media player has many limitations since
there’re limited format supported by media player.

At present, the decode module of most of the media
players is based on FFmpeg decode library which supports
more than 90 kinds of decoders, such as Storm Codec, KMP
Codec, etc and the display module is based on SDL (Simple
DirectMedia Layer) [1], [2], [4], [20].

This paper shows different approaches for design of media
player. First is plug-in extension technology on android
multimedia player software platform. Second is media player
based on hierarchy. Third is android media player software
development. Fourth, is android media framework and fifth,
is continuous media player.

Section II provides an overview of different approaches to
be used. Section III describes the comparison of different
approaches and finally section IV refers to conclusion.

2. Different Approaches

 FFmpeg is an open source that produces libraries and
programs used in audio and video areas. It support more than
90 kinds of decoders and also support protocols such as
H.261/H.263/H.264 [12], [14] and so on. It provides a
complete solution to transcode, record and stream
audio/video [16]. It includes an audio/video codec library, an
audio/video container mux and demux library, the
transplantation and codec quality [1], [2], [4].

SDL is a library used to display audio and video
information. Display module of most of the media player is
based on SDL [1], [2], [4], [20].

2.1 Plug-in extension technology on android multimedia
player software platform

2.1.1 Multimedia player software platform on android

Jin and Jiaming describes multimedia player software
platform on Android with the use of the OpenCORE kernel.
Packaging the kernel and providing in the form of SDK is
used to develop multimedia player application in mobile
terminal, such as video player and streaming media player,
etc [1].

Figure 1. Architecture of multimedia player software
platform

2.1.2 Architecture of plug-in software platform on

 FFmpeg
 Wu and Xiao show the development of application needs

powerful decoding and container that support more video
encoding formats. It describes the upper layer is Java, which
provides the application development interface
(Android_FFmpeg API). The bottom layer is the C/C++
layer, which is the core layer used to process audio/video
data with FFmpeg [11].

67

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 2, February 2013
www.ijsr.net

The implementation of FFmpeg consist of audio/video
which is packed at the bottom layer includes the data source
analysis of audio/video, the play of audio/video, paused and
callback related mistakes, etc. The implementation of the
bottom layer will be provided by Android_FFmpeg API
through Java Native Interface (JNI) [1].

Figure 2. Architecture of plug-in software platform based on

FFmpeg

The bottom layer involves the audio/video data processing
core (libffmpeg.so). It packages the related audio/video
function of FFmpeg. It includes decoding of all major
audio/video, synchronization between multiple media
streams [17], completing the display and playback features
of the audio/video [20], after decoding low-level audio/video
equipment libraries (libvideo.so; libaudio.so) [1].

The decoding of selected components achieves the
decoding format from the header of the native file or
streaming media file. It also selects corresponding decoder to
decode compressed media streams [1].

2.2 Media player based on hierarchy

2.2.1 Design of media player

 Song et. al., shows to play media files, the media player
gather the media data first, decode the audio/video streams
later, then display the data after decoding [2].

During the three steps, media player needs to parse the
coding format of the media file, decode for the original data
by the corresponding decode programs, put the original data
to buffer queues, then display the original data after being
synchronized. Design reduces the application coupling [2].

The layers of system structure of media player are UI,
decode layer, pretreatment layer and data extract layer [2].

(a) UI

UI is used to display the original data on media player for
users such as functions of play, pause, page down, page up,
etc [10], [11].

(b) Decode layer

Decode layer is used to gather information of the media
file formats, and then decodes audio/video streams by the
corresponding decoder, and then synchronize the audio/video

streams. It includes all kinds of decoders, the decoder
choosing module and the synchronize module [11], [21].

Figure 3. Flow Chart of Decode layer

Before decoding, registration of all the formats is

necessary which can be decoded by the module. Then
provide a link to connect the corresponding decode unit and
a media format [2].

(c) Pretreatment layer

 Pretreatment layer is used to demux the media file
according to the available format and store the information
of the media file into the buffer.

(d) Data extract layer

Data extract layer is used to read the media file.

Figure 4. System structure of media player

2.3 Android media player software development

2.3.1 Android media player

Jin et. al., shows common media codec mechanism, so it is
easily been integrated to multimedia files such as audio,
video and pictures. Android Media Player plays audio files
such as local files, resource files and network file streams
from many sources. This includes media player plays audio
files from SD card and displays the lyrics synchronously [3],
[13].

68

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 2, February 2013
www.ijsr.net

Figure 5. System processes of media player

2.3.2 Software module

(a) Main menu module:

Entering in the initial interface of media player, it consists
of three options: All music, recently played list, and most
often played list [3].

When Android system is start, media player automatically
scan multimedia files in the SD card. Simultaneously, store
the received information in a system database. To make the
data in the multimedia database, broadcast mechanism is
used. Then sending a broadcast in the application to update
the multimedia database by scanning the SD card. Then
register the scanSd Receiver, Broadcast Receiver [3].

(b) Play List module:

Play List is a major part to show the name of audio files,
its singers and durations. Play List is used to create a list,
when using the mouse to click one of the items in ListView,
it will trigger setOnItemClickListener monitor [3].

(c) Recently played module and the most often played

module:
Function onCreate() and onUpgrade() is used to create and

update the database. Then invoke queryRecently() to realize
recently played list by inquiring songs according to play time
descending and invoke queryByClicks() to realize Most
often played list by inquiring songs according to the hit
descending [3].

(d) Play module:

The main function is to display the information of title,
lyrics and time about the song, and some of the media
player’s functional keys, such as play, pause, stop, last, next,
backward and forward, and then display the lyrics [3].

2.4 Android media framework

 Figure 6. Android media framework

2.4.1 Android media framework architecture
Song et. al., describes the goal of Android media

framework is to provide a consistent interface for all services
provided by libraries. The core part of the media framework
is composed of libmediaplayerservice, libmedia and
libmedia_jni [4].

libmediaplayerservice implements players and the media
service which manage player instances.

Libmedia defines base interfaces and the inheritance
hierarchy. libmedia_jni is the centre between java application
and native library. First, it implements the JNI specification
so that it can be used by java application [11], [26]. Second,
it implements the pattern for the convenience of caller [4].

2.4.2 Android media players

Media Player is an important part of Android media
framework. It is used to control the playback option of Audio
and Video [20].

Methods of Media Player are implemented in C/C++ and
then compiled to .so file. JavaTM Native Interface (JNI) is a
standard programming interface for writing Java native
methods and embedding the JavaTM virtual machine into
native applications. Once the components decode the source
audio file, the decoded stream is send to audio hardware to
turn into sounds [4], [11], [26].

69

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 2, February 2013
www.ijsr.net

Figure 7. Android media framework layer

2.4.3 FFmpeg decode work flow

FFmpeg provides powerful media encode/decode
functions. First of all register all kinds of codec defined in
FFmpeg to system. So that the audio/video files can be
decoded by FFmpeg. Then open the media file from local
files and get the file stream information and the file stream
type. After these, choose a appropriate decoder and allocate
memory for data structures AVCodec, AVFormatContext,
AVStream.. And then divide the file stream into audio
stream and video stream [4].

AVFormatContext is used to save the input/output data.
AVCodecContext save the pointer of AVCodec and data
related with codec. AVCodec is used to store the codec
information such as pixels format information. AVStream
saves the data segment [4].

2.4.4 FFmpeg transplant

FFmpeg is a complete, cross-platform solution to convert
record and stream audio/video files. The makefile
Android.mk of NDK is different from normal makefile. So
the precondition is modifying the makefile of FFmpeg.

Figure 8. Decode work flow

Transplantation of other files and then, files are compiled

into .so files. These .so files are as components to provide the
functions. The java applications invoke these files through
JNI [4].

2.5 Continuous media player

Figure 9. CM player architecture

2.5.1 CM player system architecture

Rowe and Smith shows the playback application is the
interface between the user and the CM Server process. The
application includes creating windows, responding to input
events, and sending commands to the CM Server [5].

The CM Server receives CM data from the CM Source
and sends it to the appropriate output device. The CM Server
has a time-ordered play to synchronize the playing of audio
and video packets [15]. It communicates with CM Source
processes on the file server through inter process
communication channels, and it communicates with the X
server through shared memory. The system clocks on the
different systems are synchronized so that actions in the CM
Server and Sources can be synchronized. The CM Source
processes read CM data and send it to the CM Server. CM
data is sent in 8k packets on a UDP connection [5].

Meta data about scripts is stored in a database. The meta
data is separated from the raw CM data so that different
scripts can include overlapping clips without having to make
a copy of the CM data [5].

70

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 2, February 2013
www.ijsr.net

3. Comparison

3.1 Time based audio and video synchronized algorithm

FFmpeg provides DTS and PTS parameters, DTS is
decoding time stamp and PTS is time show stamp. When
obtaining a data packet from the multimedia data stream.

Figure 10. The relationship diagram of the transport stream.

PES stream and ES stream

3.2 Time-based multimedia synchronized transmission
algorithm is as follows:

Jia-ming and Jin shows display and playback the

multimedia data (audio or video), it is necessary to extract
time stamp information (Tpts) from the multimedia data
block, and compared to the current reference time (Tclock).
If the timestamp of multimedia data block is less than the
current reference time (Tpts< Tclock), play the current data
as soon as possible, or even discard the current multimedia
data directly; If the multimedia data blocks of time stamp is
greater than the reference time stamp (Tpts> Tclock), the
data block is transferring immediately to suspended state,
and waiting to play [6].

Figure 11. Multimedia synchronization performances

Selected 20 video files whose container format is flv and bit
rate is 800kbps，to test multimedia synchronization
performance.

Table 1: Shows algorithm, audio and video synchronization,

and codec standard support for different approaches

4. Conclusion

This paper shown different approaches for design of media
player. Media player should consider the improvement in
scenario such as decode efficiency needs to be improved,
synchronization between multiple media streams, and
display of the original data. Use of FFmpeg decode library
seems to be an alternative method, research shows FFmpeg
supports most media formats which gives a high decode
efficiency.

Different approaches shown in this paper are plug-in
extension technology, multimedia based on hierarchy, media
player based on file browser, media player based on
FFmpeg, media player based on file server.

References

[1] Jin He and Jiaming He, “The Research of Plug-in
Extension Technology Based on Android Multimedia
Player Platform”, IEEE 2011 International Conference
on Computer Science and Service System (CSSS-
2011), pp.874-877.

Sr.
No

Different
Approaches

Algorithm Audio and
Video

synchronization

Codec
standard
support

1. Plug-in
extension

technology
based on
android

multimedia
player

platform

FFmpeg
transplan-

tation

synchronization
between

multiple media
streams

aac; ac3;
flv4;

mpeg;
Audio

Mpeg1;
Mpeg2;
divx, etc

2. Media player
based on
hierarchy

FFmpeg
transplan-

tation, Play
module, UI

Display the
original data
after being

synchronized

amr; aac;
mp3;
h263;
mpeg;
h264

3. Android
media player

software
development

Main menu
module,
Play list
module,
Recently
played

module,
Play

module

Plays audio
files from SD

card and
displays the

lyrics
synchronously

mp3;
amr; aac;

4. Android
media

framework

FFmpeg
decode,
FFmpeg

transplan-
tation

Display all
music files in
list view and

control
playback of the

audio

rm;
wam;
mp3;
h263

5. Continuous
media player

CM data
model, CM

server
abstract-
ion, CM
network
protocol

synchronized
clock to

synchronize the
process that

plays the CM
data on a client

jpeg;
mpeg;

71

International Journal of Science and Research (IJSR), India Online ISSN: 2319‐7064

Volume 2 Issue 2, February 2013
www.ijsr.net

[2] Maoqiang Song, Jie Sun, Xiangling Fu and Wenkuo
Xiong, “Design and Implementation of Media Player
Based on Android”, IEEE 2010 6th International
Conference on Wireless Communications Networking
and Mobile Computing (WiCOM-2010), pp.1-4, 23-25
Sept. 2010.

[3] Shuangyan Jin, Haoliang Li and Yongfei Liu,
“Research on Media Player Based on Android”, IEEE
2012 9th International Conference on Fuzzy Systems
and Knowledge Discovery (FSKD-2012), pp.2326-
2329.

[4] Maoqiang Song, Wenkuo Xiong and Xiangling Fu,
“Research on Architecture of Multimedia and Its
Design Based on Android”, IEEE 2010 International
Conference on Internet Technology and Applications
(ITAPP-2010), pp.1-4.

[5] Lawrence Rowe and Brian Smith, “A Continuous
Media Player”, Workshop on Network and OS Support
for Digital Audio and Video, Computer Science
Division-EECS, pp.1-11, Nov.1992.

[6] He Jia-ming and He-Jin, “Research on the
Synchronized Transmission Algorithm of Embedded
FFmpeg Multimedia Data”, IEEE 2011 International
Conference on Internet Technology and Applications
(iTAP-2011), pp.1-3.

[7] Zhengzheng Zhang and Yaorong Lin, “Development on
video player based on Android system”, Vol. 2,
Modern electronic technology, 2011, pp.5-8.

[8] Jianye Liu and Jiankun Yu, “Research on Development
of Android Applications”, IEEE 2011 4th International
Conference on Intelligent Networks and Intelligent
Systems (ICINIS-2011), pp.69-72, 1-3 Nov. 2011.

[9] Yang Fengsheng, “Android Application Development
Secret”, Beijin. China Machine Press, 2010, pp.188b.

[10] Chun Yuan and Wenshuo Zhou, “Design and
Implementation of Embeded Streaming Media Player
Based on STB”, IEEE 2011 International Conference
on Multimedia Technology (ICMT-2011), pp.3017-
3019.

[11] Junqin Wu and Fangyang Xiao, “Design of Embedded
Streaming Media Player based on J2ME”, IEEE 2011
International Conference on Multimedia Technology
(ICMT-2011), pp.512-514.

[12] Seungsoon Lee and Minseok Song, “Selective Frame
Prefetching for Reducing Disk Energy Consumption in
Scalable Video Coding (SVC) Media Players”, 2012
IEEE Transactions on Consumer Electronics (TCE-
2012), Volume.58, Issue.2, pp.428-434, May 2012.

[13] Deeksha Saraswat and Shashank Batnagar, “Smart
Player: A New Era of Media Players”, IEEE 2011
International Conference on ICT Convergence (ICTC-
2011), pp.756-759.

[14] Wim Van Lancker, Davy Van Deursen, Ruben
Verborgh and Rik Van de Walle, “Semantic media
decision taking using N3logic”, Springer Science &
Business Media, LLC 2012, 15 March 2012, Springer
2012.

[15] Wim Van Lancker, Davy Van Deursen, Erik Mannens
and Rik Van de Walle, “Implementation strategies for
efficient media fragment retrieval”, 26 March 2011
Springer Science & Business Media, LLC 2011,
pp.243-267, Springer 2012.

[16] Liao Jianxin, Lei Zhengxiong, Ma Xutao and Zhu
Xiaomin, “Proxy-Based Patching Stream Transmission

Strategy in Mobile Streaming Media System”, Journal
of Electronics (China), Vol.23 No.4, July 2006, pp.515-
519, Springer 2006.

[17] Heejin Ahn, Seongjin Cho, Hyunik Na and Hwansoo
Han, “Access Pattern Based Stream Buffer
Management Scheme for Portable Media Players”,
2009 IEEE Transactions on Consumer Electronics
(TCE-2009), Volume.55, Issue.3, pp.1522-1529,
August 2009.

[18] Wanhyung Ryu and Minseok Song, “Design and
Implementation of a Disk Energy Saving Scheme for
Media Players Which Use Hybrid Disks”, 2010 IEEE
Transactions on Consumer Electronics (TCE-2010),
Volume.56, Issue.4, pp.2382-2386, November 2010.

[19] Wenhao Wang and Mingyu Gao, “Design of Embedded
Media Player Based on S3C2440 and SDL_FFMPEG”,
IEEE 2011 International Conference on Electrical and
Control Engineering (ICECE-2011), pp.2979-2982.

[20] Jaewoo Kim, Ahron Yang and Minseok Song,
“Exploiting Flash Memory for Reducing Disk Power
Consumption in Portable Media Players”, 2009 IEEE
Transactions on Consumer Electronics (TCE-2009),
Volume.55, Issue.4, pp.1997-2004, November 2009.

[21] Injae Lee, Hankyu Lee, Jinwoo Hong, and Jihun Cha,
“Interactive Contents Player for Rich Media Service”,
2009 IEEE Transactions on Consumer Electronics
(TCE-2009), Volume.55, Issue.1, pp.112-118, February
2009.

[22] George Toma, Laurent Schumacher and Christophe De
Vleeschouwer, “Offering Streaming Rate Adaptation to
Common Media Players”, 2011 IEEE International
Conference on Multimedia and Expo (ICME-2011),
pp.1-7.

[23] Han Hu, Jian Yang, Zilei Wang, Hongsheng Xi and
Xumin Wu, “Scene Aware Smooth Playout Control for
Portable Media Players over Random VBR Channels”,
2010 IEEE Transactions on Consumer Electronics
(TCE-2010), Volume.56, Issue.4, pp.2330-2338,
November 2010.

[24] Jing Chen, Jiajun Wang, Chuixin Zeng, Zeyu Chen and
Muhammad Jahanzaib Khan, “iPhone-based Multi-
stream M-learning Platform”, 2012 IEEE Symposium
on Electrical & Electronics Engineering (EEESYM-
2012), pp.742-746.

[25] Won-Jin Kim, Keol Cho and Ki-Seok Chung, “Stage-
based Frame-Partitioned Parallelization of H.264/AVC
decoding”, 2010 IEEE Transactions on Consumer
Electronics (TCE-2010), Volume.56, Issue.2, pp.1088-
1096, May 2010.

[26] Xiangling Fu, Xiangxiang Wu, Maoqiang Song and
Mian Chen, “Research on AudioVideo Codec Based on
Android”, IEEE 2010 6th International Conference on
Wireless Communications Networking and Mobile
Computing (WiCOM-2010), pp.1-4.

72

