
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

Faster and Resourceful Multi-core Web Crawling

Arun Kumar Dewangan1, Prof. Asha Ambhaikar2

1Rungta College of Engineering & Technology
Bhilai, Chhattisgarh, India

 arun.dewangan@gmail.com

2 Rungta College of Engineering & Technology
Bhilai, Chhattisgarh, India
asha31.a@rediffmail.com

Abstract: Due to massive growth of World Wide Web, search engines have become crucial tools for navigation of web pages. In order
to provide fast and powerful search facility, search engine maintains indexes for documents and its contents on the web by downloading
web pages for processing in iterative manner. Web indexes are created and managed by web crawlers which work as a module of search
engines and traverse the web in systematic manner for indexing its contents. A web crawling is a process which fetches data from
various servers. It is a time taking process as it gathers data from various servers. Hence, to speed up the searching process in search
engines the crawling should be fast enough. The aim of the proposed system is to enhance the speed of crawling process and CPU usage
by use of multi-core concept.

Keywords: Web crawling, multi core, indexing, parallel crawler, CPU, URL.

1. Introduction

The user of World Wide Web is being expanded by an
unpredictable speed. To process a query, search engine faces
many problems like providing an accurate and updated result
to the user. Hence the search engine should respond in
appropriate timely manner. A web crawler is a module of
search engine that traverse the web and fetches URLs from
seed URLs (initial URLs). Fetched URLs are kept in priority
based queue and process them in iterative manner. Search
engine consists of following modules [1]:
 A user interface and query engine which interacts with

database and provide the result as per user query.
 A Crawling module is a system which fetches web

pages from web servers, known as web crawler.
 Indexing and parsing module which process the web

page and extract data from the page and organize the
information.

A multi-core processor is a single computing component
having more than one independent actual central processing
units (called “cores”), which are the unit that read and
execute program instructions. The instructions are normal
CPU instructions, but multiple cores can run multiple
instructions at the same time and increasing overall speed in
parallel computing. With the popularity of the multi-core and
many-core architectures there is a great requirement for
software frameworks which can support parallel
programming methodologies. With the advent of multi-core
processors, the importance of parallel computing is
significant in the modern computing era since the
performance gain of software will mainly depend on the
maximum utilization across the cores existing in a system
[2].

2. Web Crawler

Web crawler is a module of search engine that fetches
web page from web server and extract the information. The
main function of a web crawler is to recursively visit web

pages, extract all URLs form the page, parse the page for

keywords and visit the extracted URLs recursively [3]. Web
indexes are created and maintained by Web crawlers which
operate on behalf of Web search engines and systematically
traverse the Web for the purpose of indexing its contents.
Consequently, Web crawlers are information discovery tools
which implement certain Web crawling algorithms [6]. A
simple crawling algorithm is as follows [1]:

1) Do Forever
2) Begin
3) Read a URL from the set of seed URL’s
4) Determine the IP-address for the Host name
5) Download the Robot.txt file, which carries

download information and also includes the files
to be excluded by the crawler

6) Determine the protocol of underlying Host like
HTTP, FTP, GOPHER

7) Based on this protocol, download the document
8) Check whether the document has already been

downloaded or not
9) If the document is a fresh one,
10) Then
11) store it and extract the links and references to other

sides from that document
12) Else
13) Abandon the document
14) End

3. Multi-core System

Single-core processors are able to interleave instruction
streams, but not execute them simultaneously; the overall
performance gains of a multi-threaded application on single-
core architectures are limited. On these platforms, threads
are generally seen as a useful programming abstraction for
hiding latency. This performance restriction is removed on
multi-core architectures. On multi-core platforms, threads do
not have to wait for any one resource. Instead, threads run
independently on separate cores. As an example, consider

12

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

two threads that both wanted to execute a shift operation. If a
core only had one “shifter unit” they could not run in
parallel. On two cores, there would be two “shifter units,”
and each thread could run without contending for the same
resource. Multi-core platforms allow developers to optimize
applications by intelligently partitioning different workloads
on different processor cores. Application code can be
optimized to use multiple processor resources, resulting in
faster application performance [11].

4. Literature Review

To improve the crawling speed a number of modifications
have been done. Some of them are under consideration.
Distributed Web Crawler [4], in this approach to design a
robust and efficient web crawler, it is needed to make the
task distribution across multiple machines in concurrent
processing. Huge web pages should be independently
distributed on the network and they should provide adequate
possibility and rationality for concurrent accesses.
Meanwhile, concurrent distribution will save network
bandwidth resources. Besides, in order to improve the recall
ratio, precision and search speed of the whole system, the
internal algorithm of the search should boast certain
intellectualization. In order to improve the speed, hundreds
of distributed crawlers can usually be launched
simultaneously. Distributed crawlers simultaneously analyze
and dispose of the collected web pages, extract URL links
and other relevant information, submit to their respective
dispatchers, and their respective dispatchers submit them to
the chief dispatcher.
PARALLEL CRAWLERS [5], in this paper, a parallel
crawler has multiple crawling processes (C-proc’s). Each C-
proc’s performs the basic task that a single process crawler
conducts. It downloads pages from the Web, stores the pages
locally, extracts URLs from the downloaded pages and
follows links. Depending on how the C-proc’s split the
download task, some of the extracted links may be sent to
other C-proc’s. The C-proc’s performing these tasks may be
distributed either on the same local network or at
geographically distant locations. The authors described two
crawling modes firewall mode and exchange mode. In
firewall mode, the overall crawler does not have any overlap
in the downloaded pages, because a page can be downloaded
by only one C-proc, if ever. However, C-proc’s can run quite
independently in this mode, because they do not conduct any
runtime coordination or URL exchanges. When C-proc’s
periodically and incrementally exchange inter-partition
URLs, they operate in an exchange mode. Processes do not
follow inter-partition links. The firewall mode give Cproc’s
much independence (C-proc’s do not need to communicate
with each other), but they may download the same page
multiple times, or may not download some pages. In
contrast, the exchange mode avoids these problems but
requires constant URL exchange between C-proc’s.
MOBILE CRAWLER [6], an alternative approach to Web
crawling is based on mobile crawlers. In this, the author
demonstrates more efficient approach to the “download first
process later” strategy of search engine by using mobile
crawlers. This has advantage that analysis portion of crawler

is done locally rather than remotely. This reduces network
load and speeds up the indexing phase inside the search
engine.
MERCATOR [7] is a scalable and extensible crawler.
Mercator’s design features a crawler core for handling the
main crawling tasks, and extensibility through protocol and
processing modules. Users may supply new modules for
performing customized crawling tasks. We have used
Mercator for a variety of purposes, including performing
random walks on the web, crawling our corporate intranet,
and collecting statistics about the web at large.
PARCAHYD [8], in this, work it has been proposed that if
the links contained within a document become available to
the crawler before an instance of crawler starts downloading
the documents itself, then downloading of its linked
documents can be carried out in parallel by other instances
of the crawler. Therefore, it is proposed that meta-
information in the form Table Of Links (TOL) consisting of
the links contained in a document be provided and stored
external to the document in the form of a file with the same
name as document but with different extension. This one
time extraction of TOL can be done at the time of creation of
the document.
Distributed Vertical Crawler [10], in this the authors present
a distributed template-customized vertical crawler which is
specially used for crawling Internet forums. The Client-
Server architecture of the system and the function of every
module are described in detail which can be extended to
other fields easily. A crawling-period based distribution
strategy is also proposed, with which the crawler manager
can coordinate the quantity of crawling tasks and the
resources of each crawler very well, and the crawler can
process websites with different updating frequency flexibly.
Authors also define a communication protocol between
crawlers and crawler manager and describe how to solve the
duplicated crawling problem in the distributed system. The
performance of centralized vertical crawler and distributed
vertical crawler are compared in the experiment.
Experimental results demonstrate that the parallel operation
of all the crawlers in the distributed system can greatly
enhance the crawling efficiency.
AuToCrawler [12] consist of a user interest specification
module that mediates between users and search engines to
identify target examples and keywords that together specify
the topic of their interest, and a URL ordering strategy that
combines features of several previous approaches and
achieves significant improvement. It also provides a graphic
user interface such that users can evaluate and visualize the
crawling results that can be used as feedback to reconfigure
the crawler.
Focused Crawlers [13] aim to search only the subset of the
web related to a specific topic, and offer a potential solution
to the problem. The major problem is how to retrieve the
maximal set of relevant and quality pages. The authors
propose an architecture that concentrates more over page
selection policy and page revisit policy. The three-step
algorithm for page refreshment serves the purpose. The first
layer contributes to decision of page relevance using two
methods. The second layer checks for whether the structure
of a web page has been changed or not, the text content has

13

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

been altered or whether an image is changed. The third layer
helps to update the URL repository.
Parallel Migrating Web Crawler [1], in order to keep the
database of a search engine up to date, crawlers must
constantly retrieve/update Web pages as fast as possible. To
do this, decentralize and perform site-based distribution of
work among the machines and simultaneously crawl as many
domains as possible. The crawling function is logically
migrated to different machines which send back the filtered
and compressed data to the central machine which saves time
and bandwidth. The crawler system itself consists of several
specialized components, in particular a central crawler, one
or more crawl frontiers, and a local database of each crawl
frontier. This data is transferred to the central crawler after
compression and filtering which reduces the network
bandwidth overhead. These crawl frontiers, are logically
migrated on different machines to increase the system
performance. The central crawler is responsible for receiving
the URL input stream from the applications and forwarding
it to the available crawl frontiers. The crawler system is
composed of a central crawler and a number of crawl
frontiers which perform the task of crawling.

5. Problem Identification

With growing size of web, it is difficult to retrieve the
whole or important portion of web by single process. Hence,
many search engines run multiple processes in parallel to
perform the task and to maximize the download rate. In
serial execution of processes, the CPU is simply idle while
process is waiting for I/O process to complete. In multi-
threaded environment the processes are executed
concurrently. The concurrent processes are handled by the
operating system using context switching. In both the cases
no two processes are executed in parallel (at the same time)
in single CPU. Since, multi-core systems have been
developed, to make CPU efficient and speed up the process,
we should make use of all the cores available in the single
CPU. Web crawling is a time taking process. To speed up
the crawling process we should utilize the multi-core
systems by executing the crawling process in parallel.

6. Proposed Solution

The proposed solution to the above problem is to
distribute the crawling process among the different cores
available in the CPU. In order to approach towards the
implementation of multi-core utilization of CPU and speed
up the process, some sample html files are processed. We
processed 6 sample html files (named temp1.html,
temp2.html, ---, temp6.html) to count the number of
characters in each html files. We processed the html files in
parallel in multi-core system by distributing the processing
of files into different cores. The output is taken with respect
to their start time, number of characters read, time taken for
its execution.

7. Observation

The following observations are taken for serial execution,
multi threading execution and multi-core execution:

Serial Execution:
Started on: 10:51:25
temp1.html contains 52594 char
Execution time 9.5 secs

Started on: 10:51:35
temp2.html contains 90760 char
Execution time 28.828 secs

Started on: 10:52:3
temp3.html contains 25060 char
Execution time 2.344 secs

Started on: 10:52:6
temp4.html contains 50534 char
Execution time 9.296 secs

Started on: 10:52:15
temp5.html contains 61543 char
Execution time 13.75 secs

Started on: 10:52:29
temp6.html contains 61745 char
Execution time 13.469 secs
Total run time 77.21900000000001 secs

CPU Usage is 49% - 55%

�
Figure 1. Serial Execution�

Multi-threading Execution:
Started on: 10:59:55
temp1.html contains 52594 char
Execution time 9.594 secs

Started on : 11:0:5
temp2.html contains 90760 char
Execution time 27.765 secs

Started on: 11:0:33
temp3.html contains 25060 char
Execution time 2.094 secs

Started on: 11:0:35
temp4.html contains 50534 char
Execution time 9.266 secs

Started on: 11:0:44
temp5.html contains 61543 char
Execution time 13.391 secs

Started on: 11:0:58
temp6.html contains 61745 char

14

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 1 Issue 2, November 2012
www.ijsr.net

Execution time 13.141 secs
Total run time 75.297 secs

CPU Usage is 50% - 60%

Figure 2. Multi-threading Execution�

Multi-core Execution:
Started on: 11:4:55

Started on : 11:4:55
temp1.html contains 52594 char
Execution time 14.079 secs

Started on : 11:5:9
temp3.html contains 25060 char
Execution time 3.2960000000000003 secs

Started on : 11:5:12
temp4.html contains 50534 char
Execution time 13.579 secs

Started on : 11:5:26
temp2.html contains 90760 char
Execution time 42.438 secs

Started on : 11:5:37
temp5.html contains 61543 char
Execution time 19.937 secs
temp6.html contains 61745 char
Execution time 15.844000000000001 secs
Total run time 58.391 secs

CPU Usage is 85% - 93%

Figure 3. Multi-core Execution

8. Conclusion

In this paper, we proposed a solution to maximize the CPU
usage and speed up the execution power of multi-core CPU.
As per the graph and observation recorded, it is concluded
that in multi-core execution, CPU utilization and speed of
execution is more as compared to serial and multi-threaded
execution. The same concept (multi-core execution) will be

implemented in “Faster and Resourceful Multi-core Web
Crawling”.

References

[1] Akansha Singh, Krishna Kant Singh, "Faster and
Efficient Web Crawling with Parallel Migrating Web
Crawler," International Journal of Computer Science
Issues, Vol. 7, Issue 3, No 11, pages 28-32, May 2010.

[2] G.A.C.P. Ganegoda, D.M.A. Samaranayake, L.S.
Bandara, K.A.D.N.K. Wimalawarne , “JConqurr - A
Multi-Core Programming Toolkit for Java”,
International Journal of Computer and Information
Engineering 3:4, pages 223-230, 2009.

[3] Anup A Garje, Prof. Bhavesh Patel, Dr. B. B.
Meshram, “Realizing Peer-to-Peer and Distributed Web
Crawler”, International Journal of Advanced Research
in Computer Engineering & Technology, Volume 1,
Issue 4, pages 353-357, June 2012.

[4] Shaojun Zhong, Zhijuan Deng, “A Web Crawler
System Design Based on Distributed Technology”,
JOURNAL OF NETWORKS, VOL. 6, NO. 12, pages
1682-1689, DECEMBER 2011.

[5] Junghoo Cho, Hector Garcia Molina, “Parallel
Crawlers”. In Proceedings of the Eleventh International
World Wide Web Conference, 2002.

[6] Joachim Hammer, Jan Fiedler, “Using Mobile Crawlers
to Search the Web Efficiently”, International Journal of
Computer and Information Science, 1:1, pages 36-58,
2000.

[7] A. Heydon, M. Najork, “Mercator: A scalable,
extensible web crawler”, World Wide Web, vol. 2, no.
4, 1999.

[8] A. K. Sharma, J. P. Gupta, D. P. Agarwal,
“PARCAHYD An Architecture of a Parallel Crawler
based on Augmented Hypertext Documents”,
International Journal of Advancements in Technology,
Vol 1, No 2, pages 270-283, October 2010.

[9] P. Boldi, B. Codenotti, M. Santini, S. Vigna,
“Ubicrawler: A scalablefully distributed web crawler”,
In Proceedings of AusWeb02 - The Eighth Australian
World Wide Web Conference, Queensland, Australia,
pages 1-14, 2002.

[10] Bing Zhou, Bo Xiao, Zhiqing Lin, Chuang Zhang, “A
Distributed Vertical Crawler Using Crawling-Period
Based Strategy”, 2nd International Conference on
Future Computer and Communication, Volume 1,
pages 306-311, 2010

[11] Shameem Akhter, Jason Roberts, “Multi-Core
Programming”, Intel Corporation, April 2006.

[12] Jyh-Jong Tsay, Chen-Yang Shih, Bo-Liang Wu ,
“AuToCrawler: An Integrated System for Automatic
Topical Crawler”, Proceedings of the Fourth Annual
ACIS International Conference on Computer and
Information Science, pages 1-6, 2005.

[13] Swati Mali, B. B. Meshram, “Focused Web Crawler
with Page Change Detection Policy”, 2nd International
Conference and workshop on Emerging Trends in
Technology, pages 51-57, 2011.

15

